这是一道模拟赛题,我用树上莫队水过去了。
考虑每个盘子如果两个端点都在水果的路径上出现过,他就被算到答案里。
这就是经典的查询区间颜色出现次数超过两次的数量。
移动时把合法的颜色插入权值线段树维护第K小。
O(nnlogn)O(n\sqrt{n}logn)O(nnlogn)
一个点可能会有多种颜色,所以单次的移动可能会有O(nlogn)O(nlogn)O(nlogn)的复杂度
wzp说可以按照点的颜色数分块,难卡一点,不过我懒得写了
luogu上挺慢的,bzoj是权限题我也不清楚能不能过
#include <cmath>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
const int N=40005;
struct edge {
int t,nxt;
}e[N<<1];
int n,p,q,cnt,sqr,tp,now,Time;
int head[N],w[N],b[N],fa[N][18],dep[N],st[N],bl[N],vis[N],ci[N],ans[N],dfn[N],T[N<<2];
vector<int>flg[N];
struct node {
int u,v,k,id;
bool operator <(node a) const {
return bl[u]==bl[a.u]?dfn[v]<dfn[a.v]:bl[u]<bl[a.u];
}
}ask[N];
void add(int u,int t) {
e[++cnt].t=t;e[cnt].nxt=head[u];head[u]=cnt;
}
void dfs(int u,int F) {
int la=tp;
dfn[u]=++Time;
fa[u][0]=F;dep[u]=dep[F]+1;
for (int i=1;i<=17;i++) fa[u][i]=fa[fa[u][i-1]][i-1];
for (int i=head[u];i;i=e[i].nxt) {
int t=e[i].t;
if (t==F) continue;
dfs(t,u);
if (tp-la>=sqr) {
now++;
while (tp-la>0) bl[st[tp--]]=now;
}
}
st[++tp]=u;
}
int Lca(int a,int b) {
if (dep[a]>dep[b]) swap(a,b);
for (int i=17;~i;i--) if (dep[fa[b][i]]>=dep[a]) b=fa[b][i];
if (a==b) return a;
for (int i=17;~i;i--) if (fa[b][i]!=fa[a][i]) b=fa[b][i],a=fa[a][i];
return fa[a][0];
}
#define ls ts<<1
#define rs ts<<1|1
void update(int ts,int l,int r,int pos,int v) {
T[ts]+=v;
if (l==r) return;
int mid=(l+r)>>1;
if (pos<=mid) update(ls,l,mid,pos,v);
else update(rs,mid+1,r,pos,v);
}
int query(int ts,int l,int r,int K) {
if (l==r) return b[l];
int mid=(l+r)>>1;
if (T[ls]>=K) return query(ls,l,mid,K);
else return query(rs,mid+1,r,K-T[ls]);
}
void Add(int x) {
for (int i=0;i<(int)flg[x].size();i++) {
int u=flg[x][i];
vis[u]++;
if (vis[u]==2) update(1,1,b[0],w[u],1);
}
}
void del(int x) {
for (int i=0;i<(int)flg[x].size();i++) {
int u=flg[x][i];
vis[u]--;
if (vis[u]==1) update(1,1,b[0],w[u],-1);
}
}
void HH(int x) {
if (!ci[x]) Add(x),ci[x]++;
else del(x),ci[x]--;
}
void change(int lu,int u) {
int lca=Lca(lu,u);
while (lu!=lca) HH(lu),lu=fa[lu][0];
while (u!=lca) HH(u),u=fa[u][0];
}
int main() {
// freopen("trade.in","r",stdin);
// freopen("trade.out","w",stdout);
scanf("%d%d%d",&n,&p,&q);
for (int i=1,u,v;i<n;i++) scanf("%d%d",&u,&v),add(u,v),add(v,u);
sqr=sqrt(n);
dfs(1,0);
now++;
while (tp) bl[st[tp--]]=now;
for (int i=1,u,v;i<=p;i++) {
scanf("%d%d%d",&u,&v,&w[i]);b[++b[0]]=w[i];
flg[u].push_back(i);flg[v].push_back(i);
}
sort(b+1,b+b[0]+1);
b[0]=unique(b+1,b+b[0]+1)-b-1;
for (int i=1;i<=p;i++) w[i]=lower_bound(b+1,b+b[0]+1,w[i])-b;
for (int i=1;i<=q;i++) scanf("%d%d%d",&ask[i].u,&ask[i].v,&ask[i].k),ask[i].id=i;
sort(ask+1,ask+q+1);
int lu=1,lv=1;
for (int i=1;i<=q;i++) {
int u=ask[i].u,v=ask[i].v;
change(lu,u);change(lv,v);
int lca=Lca(u,v);
Add(lca);
ans[ask[i].id]=query(1,1,b[0],ask[i].k);
del(lca);
lu=u;lv=v;
}
for (int i=1;i<=q;i++) printf("%d\n",ans[i]);
}
本文详细介绍了一种使用树上莫队算法解决特定查询问题的方法。通过实例讲解了如何利用权值线段树维护区间内颜色出现次数超过两次的数量,以及在移动过程中更新合法颜色的过程。文章深入探讨了算法的时间复杂度分析,包括O(n√nlogn)的优化技巧,并提到了针对不同平台的运行效率差异。
422

被折叠的 条评论
为什么被折叠?



