NAM:基于归一化的注意力模块

本文提出了一种名为NAM的基于归一化的注意力模块,通过抑制不显著权重来提高计算效率。NAM使用批量标准化的比例因子来衡量权重的重要性,应用于ResNet和MobileNet上,结果显示其在保持相似性能的同时,比SE、BAM和CBAM具有更高准确性。
摘要由CSDN通过智能技术生成

NAM:基于归一化的注意力模块

摘要 识别不太显着的特征是模型压缩的关键。但是,这一点在以往的注意力机制中却没有得到研究。在这项工作中,我们提出了一种新的基于归一化的注意力模块(NAM),它抑制了较少的显着权重。它将权重稀疏惩罚应用于注意力模块,从而使它们在保持相似性能的同时提高计算效率。与 Resnet 和 Mobilenet 上的其他三种注意力机制的比较表明,我们的方法具有更高的准确性。本文的代码可以在 https://github.com/Christian-lyc/NAM 上公开访问。

1引言

注意力机制是近年来研究的热点之一(Wang et al. [2017], Hu et al. [2018], Park et al. [2018], Woo et al. [2018], Gao et al. [2018] . [2019])。它帮助深度神经网络抑制不太显着的像素或通道。许多先前的研究都集中在通过注意力操作捕获显着特征(Zhang et al. [2020], Misra et al. [2021])。这些方法成功地利用了来自不同特征维度的互信息。然而,它们缺乏对权重的影响因素的考虑,这能够进一步抑制不重要的通道或像素。受刘等人的启发。 [2017],我们的目标是利用权重的影响因素来改进注意力机制。我们使用批量标准化的比例因子,它使用标准偏差来表示权重的重要性。这样可以避免添加 SE、BAM 和 CBAM 中使用的全连接和卷积层。因此,我们提出了一种

NAM(Normalized Attention Module)是一种基于归一化注意力模块,其作用是抑制不太显着的特征,从而提高模型的压缩效率。 该模块通过对注意力模块应用权重稀疏惩罚,使其在保持相似性能的同时具有更高的计算效率。 相比于在ResNet和MobileNet上使用的其他三种注意力机制,NAM方法可以提供更高的准确性。 这种注意力机制的实现代码可以在 https://github.com/Christian-lyc/NAM 上公开访问。 NAM的作用是通过抑制不太显着的特征来提高模型的压缩效率,从而在模型压缩方面具有重要的应用价值。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【第23篇】NAM:基于标准化的注意力模块](https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/122092352)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [NAM:基于归一化注意力模块](https://blog.csdn.net/qq_41897154/article/details/123819791)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值