【image clustering】Instance Similarity Learning for Unsupervised Feature Representation(2020)
原文:https://arxiv.org/pdf/2108.02721.pdf无监督特征表示(unsupervised feature representation)算是无监督聚类任务比较重要的一部分,其需要特征满足相同类别样本尽可能的靠近,不属于一个类别的样本特征之间尽可能远离。现有方法大致的思路都是先用encoder进行特征提取,之后利用相关方法寻找属于相同类别的样本集合,之后再返回去fine-tune之前的encoder,以此类推迭代训练。可以发现这其中一个较为重要的点就是:如何正确的找到样本的正











