量化教程2——模型量化算法

本文介绍了深度学习模型的量化方法,包括线性映射的对称和非对称量化,以及逐层、逐组和逐通道量化。详细讨论了在线量化和离线量化,权重量化和权重激活量化的过程。还概述了模型量化的标准步骤,包括计算min_value和max_value,选择量化类型,计算Scale和Zero point,以及模型校准和性能验证。
摘要由CSDN通过智能技术生成

在这里插入图片描述
一、仿射映射量化
在这里插入图片描述
模型的量化映射方式,如上图所示,可分为线性映射和非线性映射,对于线性映射又可分为对称量化和非对称量化;非线性量化实际应用很少,此处不做介绍。
二、线性映射
对称量化:
对称量化即使用一个映射公式将输入数据映射到 [-127,127] 的范围内,映射公式需要保证原始输入数据中的零点通过映射公式后,仍能对应 [-127,127] 区间的零点。
在这里插入图片描述
在这里插入图片描述
非对称量化࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ghx3110

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值