
一、仿射映射量化

模型的量化映射方式,如上图所示,可分为线性映射和非线性映射,对于线性映射又可分为对称量化和非对称量化;非线性量化实际应用很少,此处不做介绍。
二、线性映射
对称量化:
对称量化即使用一个映射公式将输入数据映射到 [-127,127] 的范围内,映射公式需要保证原始输入数据中的零点通过映射公式后,仍能对应 [-127,127] 区间的零点。


非对称量化
量化教程2——模型量化算法
于 2023-03-17 20:22:47 首次发布
本文介绍了深度学习模型的量化方法,包括线性映射的对称和非对称量化,以及逐层、逐组和逐通道量化。详细讨论了在线量化和离线量化,权重量化和权重激活量化的过程。还概述了模型量化的标准步骤,包括计算min_value和max_value,选择量化类型,计算Scale和Zero point,以及模型校准和性能验证。
订阅专栏 解锁全文
4668

被折叠的 条评论
为什么被折叠?



