YOLOv5改进之OTA、SimOTA

本文介绍了YOLOv5中OTA(Overlap Transport Algorithm)的原理及改进方法,并探讨了其训练成本高的问题。随后,文章详细阐述了YOLOX团队提出的SimOTA(简化Overlap Transport Algorithm),作为降低训练时间的解决方案。通过四步修改YOLOv5代码,实现了SimOTA的整合,包括在utils文件夹中添加simota.py和boxes.py,修改yolo.py、train.py及val.py的相关部分,从而在训练时提高效率。
摘要由CSDN通过智能技术生成

一、OTA
1.1 原理
OTA原论文链接:
https://readpaper.com/paper/3148566359

此处推荐一篇博文,对OTA讲解的非常详细:
https://blog.csdn.net/hymn1993/article/details/127278641

1.2 如何改进
ota代码如下:

import torch.nn.functional as F
from utils.metrics import box_iou
from utils.general import xywh2xyxy
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ghx3110

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值