目录

摘要:我们提出了一种轻量级和地面优化的激光雷达测距和测绘方法LeGO-LOAM,用于地面车辆的实时六自由度位姿估计。LeGO-LOAM重量轻,因为它可以在低功耗嵌入式系统上实现实时姿态估计。LeGO-LOAM进行了地面优化,因为它在分割和优化步骤中利用了地平面。我们首先采用点云分割滤波噪声,然后进行特征提取,得到不同的平面特征和边缘特征。然后,两步Levenberg-Marquardt优化方法使用平面和边缘特征来求解连续扫描的六自由度变换的不同组成部分。我们比较了LeGO-LOAM与最先进的方法LOAM的性能,使用从可变地形环境和地面车辆收集的数据集,并表明LeGO-LOAM在减少计算费用的情况下实现了类似或更好的精度。我们还将LeGO-LOAM集成到SLAM框架中,以消除漂移引起的位姿估计误差,并使用KITTI数据集进行测试。
1 引言
在智能机器人的功能中,地图构建和状态估计是最基本的前提条件之一。利用基于视觉和激光雷达
LeGO-LOAM是一种轻量级、地面优化的激光雷达里程计和映射方法,适用于地面车辆的实时六自由度位姿估计。通过点云分割和特征提取,利用地平面优化,实现低计算成本下的高精度。与传统的LOAM相比,LeGO-LOAM在资源有限的嵌入式系统上表现更好,减少计算成本的同时保持相似或更高的精度。实验证明,LeGO-LOAM在复杂环境和多变地形中具有较高的鲁棒性和精度。
订阅专栏 解锁全文
934

被折叠的 条评论
为什么被折叠?



