SLAM面试笔记(2) - ORB-SLAM2

本文详细介绍了ORB-SLAM2中的四叉树如何实现特征点均匀化分布,以及词袋模型在加速特征匹配和闭环检测中的作用。离线训练字典树的流程包括图像数据集准备、特征点提取和字典树建立。同时,文中还阐述了ORB-SLAM的跟踪方法,包括恒速模型、重定位和参考关键帧跟踪的细节。
摘要由CSDN通过智能技术生成

目录

1 四叉树实现特征点均匀化分布

2  Bow词袋模型

2.1 什么是词袋?

2.2 词袋在ORB-SLAM2中的作用

2.3 离线训练字典树流程

3 ORB-SLAM的跟踪方法

3.1 恒速模型跟踪

3.2 重定位跟踪

3.3 参考关键帧跟踪


持续更新中...

1 四叉树实现特征点均匀化分布

参考文章:VSLAM系列原创04讲 | 四叉树实现ORB特征点均匀化分布:原理+代码_节点

第1步:首先确定初始的节点(node)数目,一般刚开始的时候只有一个节点,也是四叉树的根节点。假如我们目标是均匀的选取 25 个特征点,那么后面我们就需要分裂出25个节点,然后从每个节点中选取一个代表性的特征点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

几度春风里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值