目录
摘要 - SLAM算法中的典型假设是场景刚性的假设。这样强大的假设限制了大多数视觉SLAM系统在人口稠密的现实世界环境中的使用,这些环境是多个相关应用的目标,如服务机器人或自动驾驶车辆。本文介绍了DynaSLAM,这是一个建立在ORB-SLAM2[1]基础上的视觉SLAM系统,它增加了动态物体检测和背景修复的能力。DynaSLAM在单目、立体和RGB-D配置下对动态场景非常稳健。我们能够通过多视角几何、深度学习或两者结合来检测移动物体。拥有场景的静态地图允许修复被这些动态物体遮挡的帧背景。我们在公开的单目、立体和RGB-D数据集上评估了我们的系统。我们研究了几种准确性/速度折衷的影响,以评估所提出方法的限制。DynaSLAM在高度动态的场景中超过了标准视觉SLAM基线的准确性。它还估计了场景静态部分的地图,这对于在现实世界环境中进行长期应用是必需的。
0 Introduction
SLAM是许多机器人应用的先决条件,例如无碰撞导航。SLAM技术从其机载传感器的数据流中联合估计未知环境的地图和机器人在该地图中的位姿。地图允许机器人在相同环境中持续定位,而不会积累漂移。这与在局部窗口内集成增量运动估计的里程计方法不同,当重新访问地点时无法纠正漂移。
DynaSLAM是一个基于ORB-SLAM2的视觉SLAM系统,针对动态场景进行了增强,能够检测和处理移动物体,防止其干扰跟踪和建图。通过多视角几何和深度学习相结合,DynaSLAM在单目、立体和RGB-D配置下表现出色,尤其在高动态场景中超越了标准SLAM系统。系统能检测动态物体,修复被遮挡的背景,适用于自动驾驶和长期应用。
订阅专栏 解锁全文
1278

被折叠的 条评论
为什么被折叠?



