目录
3.2 SegmentDynObject::SegmentDynObject()
3.3 SegmentDynObject::GetSegmentation()
3.1 Mask R-CNN运行
在Examples/RGB-D/rgbd_tum.cc文件开始运行Mask R-CNN网络,首先进入MaskNet->GetSegmentation函数。
// Segment out the images
// 开始进行图像分割
cv::Mat mask = cv::Mat::ones(480,640,CV_8U);
if (argc == 6 || argc == 7)
{
cv::Mat maskRCNN;
// 利用GetSegmentation()函数进行图像分割
maskRCNN = MaskNet->GetSegmentation(imRGB,string(argv[5]),vstrImageFilenamesRGB[ni].replace(0,4,""));
// 将分割的结果 maskRCNN 复制到 maskRCNNdil
cv::Mat maskRCNNdil = maskRCNN.clone();
// 对 maskRCNN 应用膨胀操作,使用 kernel 作为内核
cv::dilate(maskRCN
本文详细介绍了DynaSLAM中Mask R-CNN的运行过程,包括在rgbd_tum.cc文件中启动网络,SegmentDynObject构造函数中加载网络配置和初始化,以及SegmentDynObject::GetSegmentation()函数用于获取图像分割结果的步骤。重点讲解了环境变量设置、Python解释器初始化和图像处理流程。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



