时间序列预测 — ARIMA模型原理

ARIMA模型是统计学经典的时间序列预测模型,适用于单变量序列。本文介绍了ARIMA模型原理、适用条件、差分操作及其作用、数据平稳性检验和如何确定p、g值。通过差分、ADF检验等方法处理数据,确保模型建立在平稳序列基础上,以实现准确的未来值预测。
摘要由CSDN通过智能技术生成

 专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html

专栏内容

 所有文章提供源代码、数据集、效果可视化

 文章多次上领域内容榜、每日必看榜单、全站综合热榜

时间序列预测存在的问题

 现有的大量方法没有真正的预测未来值,只是用历史数据做验证

 利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎


目录

1 ARIMA模型简介

1.1 ARIMA模型原理

1.2 ARIMA模型适用条件

1.3 模型基本步骤

2 差分(Differencing)

2.1 差分运算的作用

2.2 差分运算

2.3 差分的阶数

2.4 差分的滞后

2.5 差分运算使用注意点

3 数据的平稳性

3.1 数据平稳性的概念

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

几度春风里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值