时间序列预测 — LSTM实现多变量多步负荷预测(Tensorflow):直接多输出

本文介绍了使用LSTM进行时间序列预测,特别是多变量多步负荷预测的方法。通过数据预处理、模型训练和预测,展示了如何在Tensorflow中实现这一过程。数据集包含澳大利亚电力负荷和多个气象参数,经过归一化处理后用于模型训练。模型训练了20个epochs,然后进行多步预测,结果显示模型能够捕捉到负荷变化的趋势,但存在一定的预测误差。
摘要由CSDN通过智能技术生成
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

几度春风里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值