专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html
专栏内容
所有文章提供源代码、数据集、效果可视化
文章多次上领域内容榜、每日必看榜单、全站综合热榜
时间序列预测存在的问题
现有的大量方法没有真正的预测未来值,只是用历史数据做验证
利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎
本文介绍了使用LSTM进行时间序列预测,特别是多变量多步负荷预测的方法。通过数据预处理、模型训练和预测,展示了如何在Tensorflow中实现这一过程。数据集包含澳大利亚电力负荷和多个气象参数,经过归一化处理后用于模型训练。模型训练了20个epochs,然后进行多步预测,结果显示模型能够捕捉到负荷变化的趋势,但存在一定的预测误差。
专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html
专栏内容
所有文章提供源代码、数据集、效果可视化
文章多次上领域内容榜、每日必看榜单、全站综合热榜
时间序列预测存在的问题
现有的大量方法没有真正的预测未来值,只是用历史数据做验证
利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎
2537
3282
1819
1491
5万+

被折叠的 条评论
为什么被折叠?