专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html
专栏内容
所有文章提供源代码、数据集、效果可视化
文章多次上领域内容榜、每日必看榜单、全站综合热榜
时间序列预测存在的问题
现有的大量方法没有真正的预测未来值,只是用历史数据做验证
利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎
目录
本文介绍了使用GRU神经网络进行时间序列预测,特别是针对多变量多步的光伏发电功率预测。数据预处理包括缺失值填充和归一化,模型训练涉及20个epochs,而预测部分强调在无未来特征情况下如何进行多步预测。预测结果可视化显示模型能捕捉趋势但存在波动。
专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html
专栏内容
所有文章提供源代码、数据集、效果可视化
文章多次上领域内容榜、每日必看榜单、全站综合热榜
时间序列预测存在的问题
现有的大量方法没有真正的预测未来值,只是用历史数据做验证
利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎
目录
1819
572

被折叠的 条评论
为什么被折叠?