MR之ReduceJoin


前言

前一篇文章将了下MapJoin,其实ReduceJoin和MapJoin类似,只不过一个是在Map端匹配,一个是在Reduce端匹配,各有各的优势。

一、实现思路

和MapJoin类似,也是通过读取二个文件,文件的大小可以很大,通过FileInputFormat读取文件,读取到文件后需要获取文件的名称,通过文件名称来区分对应的是订单还是产品文件,再封装成对象输出,输出的key值为二个文件公有的产品id,从而到reduce端就可以获取到二个文件的数据,最后再进行匹配名称即可。

二、具体代码

1.OrderBean类

package com.hadoop.mapreduce.reduceJoin;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * @author LengQing
 * @date 2020/5/3 - 15:20
 * 实现将订单表和产品表数据合并
 */
public class OrderBean implements Writable {
    private String o_id; // order表:订单id
    private String p_id; // order表、product表:商品id
    private double o_price; // order表:商品单价
    private Integer o_num; // order表:商品数量
    private String p_name; // product表:商品名称
    private String flag; // 表标识

    public OrderBean() {
        super();
    }

    public OrderBean(String o_id, String p_id, double o_price, Integer o_num, String p_name, String flag) {
        this.o_id = o_id;
        this.p_id = p_id;
        this.o_price = o_price;
        this.o_num = o_num;
        this.p_name = p_name;
        this.flag = flag;
    }
    @Override
    public String toString() {
        return o_id + '\t' + p_name + '\t' + o_num + '\t' + o_price;
    }

    public String getO_id() {
        return o_id;
    }

    public void setO_id(String o_id) {
        this.o_id = o_id;
    }

    public String getP_id() {
        return p_id;
    }

    public void setP_id(String p_id) {
        this.p_id = p_id;
    }

    public double getO_price() {
        return o_price;
    }

    public void setO_price(double o_price) {
        this.o_price = o_price;
    }

    public Integer getO_num() {
        return o_num;
    }

    public void setO_num(Integer o_num) {
        this.o_num = o_num;
    }

    public String getP_name() {
        return p_name;
    }

    public void setP_name(String p_name) {
        this.p_name = p_name;
    }

    public String getFlag() {
        return flag;
    }

    public void setFlag(String flag) {
        this.flag = flag;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(o_id);
        out.writeUTF(p_id);
        out.writeDouble(o_price);
        out.writeInt(o_num);
        out.writeUTF(p_name);
        out.writeUTF(flag);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        o_id = in.readUTF();
        p_id = in.readUTF();
        o_price = in.readDouble();
        o_num = in .readInt();
        p_name = in.readUTF();
        flag = in.readUTF();
    }
}

2.ReduceJoinMapper类

package com.hadoop.mapreduce.reduceJoin;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.io.IOException;

/**
 * @author LengQing
 * @date 2020/5/3 - 15:07
 */
public class ReduceJoinMapper extends Mapper<LongWritable, Text, Text, OrderBean> {
    private Text outputKey = new Text();
    private OrderBean orderBean = new OrderBean();
    private String name;


    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
        // 1 获取输入文件切片
        FileSplit fileSplit = (FileSplit)context.getInputSplit();
        // 2 获取输入的文件名称
        name = fileSplit.getPath().getName();
    }

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] line = value.toString().split("\t");
        if (name.startsWith("order")){ // 封装order表数据对象
            this.outputKey.set(line[1]);
            orderBean.setO_id(line[0]);
            orderBean.setP_id(line[1]);
            orderBean.setO_num(Integer.parseInt(line[2]));
            orderBean.setO_price(Double.parseDouble(line[3]));
            orderBean.setP_name("");
            orderBean.setFlag("order");
        }else{ // 封装product表数据对象
            this.outputKey.set(line[0]);
            orderBean.setO_id("");
            orderBean.setP_id(line[0]);
            orderBean.setO_price(0);
            orderBean.setO_num(0);
            orderBean.setP_name(line[1]);
            orderBean.setFlag("product");
        }
        context.write(this.outputKey, orderBean);
    }
}

3.ReduceJoinReduce类

package com.hadoop.mapreduce.reduceJoin;

import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.ArrayList;

/**
 * @author LengQing
 * @date 2020/5/3 - 15:08
 */
public class ReduceJoinReduce extends Reducer<Text, OrderBean, Text, NullWritable> {
    private Text outputKey = new Text();
    @Override
    protected void reduce(Text key, Iterable<OrderBean> values, Context context) throws IOException, InterruptedException {
        // 1 pd表对象,存放pd表数据
        OrderBean pdBean = new OrderBean();
        int num = 0;
        double price = 0.0;
        for (OrderBean value : values) {
            if ("order".equals(value.getFlag())){
                num += value.getO_num();
                price += value.getO_price();
            }else{
                try {
                    // 拷贝传递过来的产品表到内存中
                    BeanUtils.copyProperties(pdBean, value);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }
        outputKey.set(pdBean.getP_name() + "\t" + num + "\t" + price);
        context.write(outputKey, NullWritable.get());
    }
}

4.RecudeJoinDriver类

package com.hadoop.mapreduce.reduceJoin;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

/**
 * @author LengQing
 * @date 2020/5/3 - 14:29
 * 需求:将order表中的按照产品编号汇总产品金额,并将产品编号替换成产品表的产品名称
 */
public class RecudeJoinDriver extends Configured implements Tool {
    private Configuration conf = new Configuration();
    @Override
    public int run(String[] args) throws Exception {
        // 实例化Job
        Job job = Job.getInstance(conf, "reduceJoin");
        job.setJarByClass(RecudeJoinDriver.class);

        // 1 input阶段
        Path inputPath = new Path(args[0]);
        FileInputFormat.setInputPaths(job, inputPath);

        // 2 map阶段
        job.setMapperClass(ReduceJoinMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(OrderBean.class);

        // 3 shuffle阶段

        // 4 reduce阶段
        job.setReducerClass(ReduceJoinReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 5 output阶段
        Path outputPath = new Path(args[1]);
        FileOutputFormat.setOutputPath(job, outputPath);

        return job.waitForCompletion(true) ? 0 : 1;
    }

    public static void main(String[] args) {
        try {
            int status = ToolRunner.run(new RecudeJoinDriver(), args);
            System.exit(status);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值