先了解一下模'运算:
模运算即求余运算:在数学中用符号 mod 表示。模 p 运算的定义如下:
给定一个正整数 p,任意一个整数 n,一定存在等式:n=kp+r(k、r 是整数,且 0<=r < p),称 k 为 n 除以 p 的商,r 为 n 除以 p 的余数,记着:r=n mod p。
故a= b(mod p)等价于p能被a-b整除
1.威尔逊定理
当且仅当P为素数时:(p-1)! -1(mod p)
也等价于(p-1)!p-1(mod p) 即((p - 1)! + 1) % p == 0(暂时不知道有什么用)
即若p为质数,则P能被(p-1)!+1整除。
2.欧拉定理
若n,a为整数,且n,a互质,即gcd(a,n)=1 /

本文介绍了模运算的概念,以及数论中的几个重要定理:威尔逊定理指出当P为素数时(p-1)! - 1 ≡ 0 (mod p);欧拉定理说明如果n和a互质,那么a^(φ(n)) ≡ 1 (mod n),其中φ(n)是欧拉函数;费马小定理表明如果p是质数且a与p互质,那么a^(p-1) ≡ 1 (mod p);最后提到了孙子剩余定理,涉及中国古老的同余方程解法。
最低0.47元/天 解锁文章
652

被折叠的 条评论
为什么被折叠?



