python爬虫验证码的识别

本文介绍了使用Python的tesserocr库和selenium库来识别和处理验证码的方法。首先,详细说明了安装这两个库的过程,特别是tesserocr的安装注意事项。接着,展示了如何通过将验证码图片转为灰度图并应用阈值处理来去除干扰字符。然后,利用正则表达式清理多余字符,并演示了selenium库如何模拟浏览器自动输入验证码,最终成功登录网站。文章适合初学者实践爬虫验证码识别。
摘要由CSDN通过智能技术生成

所需工具,tesserocr库和selenium库,python3.7.7

selenium库直接在你的命令行下pip install selenium就行,选python3.7.7是因为能更好的兼容tesserocr库,
tesserocr库的安装就有点麻烦了,tesserorc安装
所有的工具都安装好了之后就可以开始操作了。
这是一个专门练习爬虫验证码识别的网站
在这里插入图片描述
进去以后是这个样子,用户名和密码默认都是admin,接下来我们可以先小试牛刀一手看看的tesserocr的效果,先将这个上图的验证码图片另存到你想存放的文件目录下,接下来开始动手写代码

# 导入模块
import tesserocr
from PIL import Image
# 读取图片
image = Image.open('D:/picture/test2.png')
# 识别图片中的字符
txt = tesserocr.image_to_text(image)
# 答应结果
print(txt)
>>— f9.2 4

我们可以看到除了f924之外还多出来一些干扰字符-和.,这是图片里多余的像素点对识别进行了干扰,一般情况下的解决办法是将图片转换成为灰度图像然后通过阈值来对点进行筛选,然后在通过re库里面的替换模块来将多余的干扰字符全替换成none,话不多说,码如下:

# 导入模块
import tesserocr
from PIL import Image
import re
import numpy as np

image = Image.open('D:/picture/test2.png')
# 将图片转换成灰度图像,就是只有白和黑2中颜色
demo = image.convert('L')
# 将图像转换成多维数组
arr = np.array(demo
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

guizhouspiderman

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>