【问题记录】DeepSeek本地部署遇到问题

详细的部署过程以及原理,各位大佬已经解释的很详细了,这里不重复只是记录过程中遇到的一个问题。
本地部署 DeepSeek-R1 模型全攻略 - 王浩宇的博客)

问题详情

Error: Post "http://127.0.0.1:11434/api/show": read tcp 127.0.0.1:57395->127.0.0.1:11434:

faillure1
failure2

看起来是ollama api无法访问
添加新的环境变量即可。

  1. win + r 搜索 sysdm.cpl
  2. 系统属性 -> 高级 -> 环境变量
  3. 用户变量 -> 新建 ->
  4. 变量名:OLLAMA_ORIGINS 变量值: *
    env_var
    exesuccess
    这样就执行成功了。
    带gui页面的操作再参见上述帖子即可

后续再次执行
ollama run deepseek-r1:xxx 带上相应参数即可直接开启服务。

### DeepSeek 本地部署后无响应解决方案 对于 DeepSeek 模型在本地部署完成后出现无响应的情况,可以从以下几个方面排查和解决问题。 #### 1. 验证环境配置 确保操作系统、硬件资源以及依赖项均满足官方最低要求。特别是内存容量应符合所选用模型版本的需求[^4]。例如,完整的 R1 模型需占用约 404 GB 的磁盘空间,并建议至少配备有 32GB RAM 的 M 芯片 Mac 设备来运行标准版;而对于存储有限的设备,则可以选择更轻量级的变体如 `DeepSeek-R1-Distill-Qwen-1.5B` 来减少负担。 #### 2. 安装过程复查 回顾整个安装流程是否有遗漏或错误操作。按照指导文档中的说明逐步执行命令,比如通过 pip 工具安装必要的 Python 库文件时要注意版本兼容性问题[^3]。可以尝试重新启动计算机后再试一次以排除临时性的网络连接失败等因素带来的影响。 #### 3. 日志分析 查看日志记录可以帮助定位具体原因所在。大多数情况下,在终端窗口中会显示一些提示信息或者警告消息,这些都可能是造成程序无法正常工作的线索之一。注意收集任何异常报告并与社区论坛上的讨论相比较寻找相似案例及其对应的修复方法。 #### 4. 参数调整优化 适当修改启动参数也可能有助于改善性能表现。当遇到长时间卡顿甚至完全失去交互能力的现象时,考虑降低批处理大小(batch size),增加线程数(thread count)或是启用其他加速选项(如GPU支持)[^2]。这通常涉及到编辑配置文件(.yaml/.json格式)内的设置条目。 #### 5. 更新至最新版本 最后但同样重要的是保持软件处于最新的稳定状态。开发者团队经常会发布补丁用来修正已知漏洞并引入新特性增强用户体验。因此定期访问项目主页获取更新通知十分必要。 ```bash # 使用 git 命令拉取远程仓库里的改动到本地副本 git pull origin main ``` 如果上述措施仍未能有效缓解状况,可能就需要联系技术支持人员寻求进一步的帮助了。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值