
论文阅读
文章平均质量分 96
阅读过的文献
咪胡
这个作者很懒,什么都没留下…
展开
-
LESSR 处理基于会话的推荐的图神经网络信息丢失 推荐系统经典文章阅读
2020年左右,图神经网络 (GNN) 因其在各种应用中令人信服的性能而越来越受欢迎。许多先前的研究也尝试将 GNN 应用于基于会话的推荐并获得了有希望的结果。然而,我们发现这些基于 GNN 的会话推荐方法存在两个信息丢失问题,即有损会话编码问题和无效的长距离依赖捕获问题。第一个问题是有损会话编码问题。由于从会话到图的有损编码以及消息传递过程中的排列不变聚合,一些关于项目转换的顺序信息被忽略。第二个问题是无效的长距离依赖捕获问题。由于层数有限,无法捕获会话内的一些长距离依赖关系。原创 2024-10-14 14:58:23 · 946 阅读 · 0 评论 -
SRGNN 基于图神经网络的会话推荐 推荐系统经典文章阅读
基于会话的推荐问题旨在基于匿名会话预测用户行为。先前的方法将会话建模为一个序列,并估计除项目表示之外的用户表示以进行推荐。虽然取得了有希望的结果,但它们不足以在会话中获得准确的用户向量,并且忽略了项目的复杂转换。为了获得准确的项目嵌入并考虑项目的复杂转换,我们提出了一种新方法,即基于图神经网络的会话推荐,简称 SR-GNN。在所提出的方法中,会话序列被建模为图结构数据。基于会话图,GNN 可以捕获项目的复杂转换,而这些转换很难通过以前的传统顺序方法揭示。原创 2024-10-08 12:15:00 · 1349 阅读 · 0 评论 -
KDD24论文简读 基于独立级联图增强的自监督去噪稳健社会推荐 翻译加理解
社交推荐 (SR) 通常利用社交网络中的邻里影响力来增强用户偏好建模。 然而,用户复杂的社交行为可能会为用户建模引入嘈杂的社交联系,损害模型的稳健性。现有的缓解社交噪音的解决方案要么过滤掉嘈杂的联系,要么生成新的潜在社交联系。由于缺乏标签,前一种方法可能会为用户偏好建模保留不确定的联系,而后一种方法可能会引入额外的社交噪音。通过数据分析,发现 (1) 社交噪音可能来自偏好相似度较低的连接用户;(2) 意见领袖 (OL) 在影响力传播中发挥着关键作用,超越了高相似度的邻居,无论他们与信任同伴的偏好相似度如何。原创 2024-09-26 22:58:17 · 1064 阅读 · 0 评论