Stella Zhou
码龄7年
关注
提问 私信
  • 博客:1,140
    动态:7
    1,147
    总访问量
  • 3
    原创
  • 645,381
    排名
  • 5
    粉丝
  • 0
    铁粉

个人简介:语音相关

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:香港
  • 加入CSDN时间: 2018-04-11
博客简介:

qq_41983690的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得0次评论
  • 获得5次收藏
创作历程
  • 3篇
    2021年
成就勋章
TA的专栏
  • 论文阅读
    3篇
兴趣领域 设置
  • 人工智能
    语音识别机器学习深度学习神经网络tensorflowpytorch数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

论文阅读|INTRA-CLASS UNCERTAINTY LOSS FUNCTION FOR CLASSIFICATION

主要观点提出基于高斯分布的损失函数,以处理类内不确定性问题高斯均值相当于类中心,不确定性用方差描述类似于类间margin,提出类内margin原理阐述类样本不平衡会导致极坐标下的类分类变得困难L-GM Loss:LL−GM=−1N∑i=1Nlog⁡e−dzi(1+α)∑mMe−dm(1+R(m=zi)α)+λ(dzi+12log⁡∣Λzi∣)\begin{aligned}\mathcal{L}_{L-G M}=&-\frac{1}{N} \sum_{i=1}^{N} \log
原创
发布博客 2021.08.31 ·
360 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文阅读|Beyond softmax loss: Intra-concentration and inter-separability loss for classification

主要观点Softmax具有如下缺点:类间距离甚至会小于类内距离;对特征向量和权重向量的幅值不具有鲁棒性;不适合处理类样本不均衡的任务;没有拒绝错误样本的能力,该样本的标签没有被训练过;在极坐标下,难以添加margin;softmax函数esi/∑iesk{e^{s_{i}} / \sum_{i}^{e^{s} k}}esi​/∑iesk​的比值不是保持不变的,特征向量和权重向量会变得越来越大;提出intra-concentration and inter-separability l
原创
发布博客 2021.08.31 ·
261 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文阅读|Circle Loss: A Unified Perspective of Pair Similarity Optimization

项目地址:CircleLoss主要观点重新计算每个相似度的权重,以突出优化程度较低的相似度得分;因此提出circle loss,由于决策边界为circle,故为circle loss;对class-level label和pair-wise label进行统一;原理阐述1比1识别任务应该是减少类间相似度sns_nsn​,增大类内相似度sps_psp​,但是现有的loss在反向传播时,对sns_nsn​与sps_psp​的梯度更新是一致的。这就导致某些点无法得到很好的更新,比如sns_nsn​与
原创
发布博客 2021.08.27 ·
481 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏