博弈论 SG函数 SG定理

本来这篇博客叫《博弈论入门》,但写完后发现好像没东西了……

SG函数

一个公平游戏(impartial game)可以抽象为:在一个DAG上有一枚棋子,两人轮流移动它,不能移动者输。 
SG函数的定义如下。没有出度的点的SG值为0,其它点的SG值为它的后继的SG值的mex。即SG(u)=mex{SG(v)},u→vSG(u)=mex{SG(v)},u→v。 
在SG值为0的点上,先手必败,而在其它点上先手必胜。

数据规模较大时,一般来说,可以通过打表找到SG函数的通项。 
其它时候可以递推求。求mex用Trie树上的跳法。

SG定理

在多个DAG上进行上述游戏操作,每次可以移动一个DAG上的棋子。设当前状态为每个DAG上棋子所在位置的集合{p1,p2,...}{p1,p2,...},则SG({p1,p2,...})=SG(p1)⊕SG(p2)⊕...SG({p1,p2,...})=SG(p1)⊕SG(p2)⊕...。

Tartan定理

描述组合游戏在多个维度上的合并。

Nim和在01状态且决策互相影响游戏上的特殊性

给定一个棋盘,每个格子有黑白两个状态。每次操作只能针对黑色格子,会对某些格子取反。由于Nim和的性质,可以证明一个格子的SG值是它所影响的格子的游戏的合并。即无需考虑是否会统计到白色格子。 
如:SG(i)←mexeachtransferencekind{XOR{SG(eachstatekinder)}}SG(i)←mexeachtransferencekind{XOR{SG(eachstatekinder)}}

无向图删边游戏

给定一个无向图,有一中心点,两人轮流操作,每次可切断一条中心点所在联通块内的一条边,先不能操作者输。 
Fusion Principle定理说明:在无向图删边游戏中,将一个环上的所有边变为环上的一个点上的相同数量的自环后,图的SG值不变。 
这里写图片描述 
picture from Game Theory, Qin Yue, Tsinghua Univ. 
缩点后做树形删边游戏即可。

SJ定理

反公平游戏(Anti-SG Game)描述为:DAG上没有出度的点为胜利状态,其它定义与一般游戏相同。现在的问题是解决多个反公平游戏的合并。 
SJ定理说明:先手必胜,当且仅当以下两个条件同时成立或同时不成立: 
1.合并的SG值为0; 
2.所有游戏的SG值不超过1。

其它经典模型

有向图公平游戏

在有向图上进行经典游戏。

先算出可计算的SG函数,最后不能计算的点是平局点。

欧几里得的游戏

给定a、ba、b,每次对一个数删去另一个数的若干倍,有一个数为0时失败。

若a≥2ba≥2b,则先手必胜。否则递归处理。

擦数游戏

有数1~n,每次选一个数划去它的所有约数,没有数则失败。

先手必胜。

階梯博弈

以0为地面,1~n为逐渐升高的台阶,每个台阶上有若干石子。每人每次将一个台阶上的若干石子移到比它低的台阶。

当且仅当所有奇数台阶上的式子异或和不为0时,先手必胜。 
阶梯博弈推广 “每个格子有黑白两种状态,每次选择某白色格子可确定的格子翻转,不能操作者输”与这个游戏等价:每个格子有黑白两种状态,每次选择某格子可确定的格子翻转,将所有格子都变为黑色的人赢。

无向点地理问题(Undirected vertex geography problem)

在一个无向二分图上进行轮流移动棋子游戏,不能经过重复的点。

广义地理(generalized geography)是一个典型的完全P空间(PSPACE-Complete)问题。 
当且仅当棋子在所有最大匹配上时,先手必胜。 
from LOJ536

练习题

Lasker的游戏

有n堆石子,每次可以选一堆石子中取出一些石子或分成两堆石子。没有石子则失败。

SG(i)表示i个石子的SG值,打表发现SG函数形如1,2,4,3,5,6,8,7,9,10,12,11,……。按SG定理合并即可。

本来这篇博客叫《博弈论入门》,但写完后发现好像没东西了……

SG函数

一个公平游戏(impartial game)可以抽象为:在一个DAG上有一枚棋子,两人轮流移动它,不能移动者输。 
SG函数的定义如下。没有出度的点的SG值为0,其它点的SG值为它的后继的SG值的mex。即SG(u)=mex{SG(v)},u→vSG(u)=mex{SG(v)},u→v。 
在SG值为0的点上,先手必败,而在其它点上先手必胜。

数据规模较大时,一般来说,可以通过打表找到SG函数的通项。 
其它时候可以递推求。求mex用Trie树上的跳法。

SG定理

在多个DAG上进行上述游戏操作,每次可以移动一个DAG上的棋子。设当前状态为每个DAG上棋子所在位置的集合{p1,p2,...}{p1,p2,...},则SG({p1,p2,...})=SG(p1)⊕SG(p2)⊕...SG({p1,p2,...})=SG(p1)⊕SG(p2)⊕...。

Tartan定理

描述组合游戏在多个维度上的合并。

Nim和在01状态且决策互相影响游戏上的特殊性

给定一个棋盘,每个格子有黑白两个状态。每次操作只能针对黑色格子,会对某些格子取反。由于Nim和的性质,可以证明一个格子的SG值是它所影响的格子的游戏的合并。即无需考虑是否会统计到白色格子。 
如:SG(i)←mexeachtransferencekind{XOR{SG(eachstatekinder)}}SG(i)←mexeachtransferencekind{XOR{SG(eachstatekinder)}}

无向图删边游戏

给定一个无向图,有一中心点,两人轮流操作,每次可切断一条中心点所在联通块内的一条边,先不能操作者输。 
Fusion Principle定理说明:在无向图删边游戏中,将一个环上的所有边变为环上的一个点上的相同数量的自环后,图的SG值不变。 
这里写图片描述 
picture from Game Theory, Qin Yue, Tsinghua Univ. 
缩点后做树形删边游戏即可。

SJ定理

反公平游戏(Anti-SG Game)描述为:DAG上没有出度的点为胜利状态,其它定义与一般游戏相同。现在的问题是解决多个反公平游戏的合并。 
SJ定理说明:先手必胜,当且仅当以下两个条件同时成立或同时不成立: 
1.合并的SG值为0; 
2.所有游戏的SG值不超过1。

其它经典模型

有向图公平游戏

在有向图上进行经典游戏。

先算出可计算的SG函数,最后不能计算的点是平局点。

欧几里得的游戏

给定a、ba、b,每次对一个数删去另一个数的若干倍,有一个数为0时失败。

若a≥2ba≥2b,则先手必胜。否则递归处理。

擦数游戏

有数1~n,每次选一个数划去它的所有约数,没有数则失败。

先手必胜。

階梯博弈

以0为地面,1~n为逐渐升高的台阶,每个台阶上有若干石子。每人每次将一个台阶上的若干石子移到比它低的台阶。

当且仅当所有奇数台阶上的式子异或和不为0时,先手必胜。 
阶梯博弈推广 “每个格子有黑白两种状态,每次选择某白色格子可确定的格子翻转,不能操作者输”与这个游戏等价:每个格子有黑白两种状态,每次选择某格子可确定的格子翻转,将所有格子都变为黑色的人赢。

无向点地理问题(Undirected vertex geography problem)

在一个无向二分图上进行轮流移动棋子游戏,不能经过重复的点。

广义地理(generalized geography)是一个典型的完全P空间(PSPACE-Complete)问题。 
当且仅当棋子在所有最大匹配上时,先手必胜。 
from LOJ536

练习题

Lasker的游戏

有n堆石子,每次可以选一堆石子中取出一些石子或分成两堆石子。没有石子则失败。

SG(i)表示i个石子的SG值,打表发现SG函数形如1,2,4,3,5,6,8,7,9,10,12,11,……。按SG定理合并即可。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 黑客帝国 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值