ValueError: Target scores need to be probabilities for multiclass roc_auc, i.e. they should sum up t

博客指出了一种在计算多分类ROC值时常见的错误,即未能预测概率导致结果失准。作者通过深入源代码,发现了官方示例中的问题,并强调在进行预测时需要包含概率(_proba)信息以确保正确评估。这个错误对于准确评估模型性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

发现了一个很有趣的错误,标题计算多分类的ROC值,这个错误肯定不难。值的错误

是因为ROC根据概率值,去判断测试集预测的是正例还是负例,所以在进行预测得时候,要预测概率,加个_proba

我是在源代码发现这个错误的。

定位到python内部的定义,人家官方给了例子,一看就知道哪里错了。


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值