目录
Reference links are as follows:
目标:使用AdaBoostClassifier实现多分类
解决方法:
(1)网上搜索案例
(2)查看官方文档 or 命令行使用help()
这次想用一下help(),突破一下。
首先,python命令行输入help()
help()
然后,出现如下,输入sklearn.ensemble
![]()
PACKAGE CONTENTS(包的内容)
_bagging
_base
_forest
_gb
_gb_losses
_gradient_boosting
_hist_gradient_boosting (package)
_iforest
_stacking
_voting
_weight_boosting
setup
tests (package)class AdaBoostClassifier(sklearn.base.ClassifierMixin, BaseWeightBoosting)(我想用的类)
| An AdaBoost classifier.
|
| An AdaBoost [1] classifier is a meta-estimator that begins by fitting a
| classifier on the original dataset and then fits additional copies of the
| classifier on the same dataset but where the weights of incorrectly
| classified instances are adjusted such that subsequent classifiers focus
| more on difficult cases.
| (AdaBoostClassifier类是一个先开始在原始数据集上拟合类别的元评估器,并且拟合该数据集上额外的样本复制类别,但是分类判断错误的样本的权重会被调整,在接下来的分类器中会更加注重这种样本案例)
| This class implements the algorithm known as AdaBoost-SAMME [2].
| (这个类实现了 AdaBoost-SAMME算法)
| Read more in the :ref:`User Guide <adaboost>`.

这篇博客介绍了如何使用AdaBoostClassifier实现多分类任务,详细解释了如何通过官方文档和命令行帮助理解算法。博客提到了AdaBoostClassifier的参数,如base_estimator、n_estimators和learning_rate,并给出了简单的示例代码来展示如何训练和预测。
最低0.47元/天 解锁文章
读官方文档:from sklearn.ensemble import AdaBoostClassifier&spm=1001.2101.3001.5002&articleId=116447498&d=1&t=3&u=f6677dafa29146629c09681d3d8e7127)
2936

被折叠的 条评论
为什么被折叠?



