* 因为自己初学时候混淆过CNN中图像尺寸变化与通道数变化,本文从理论=>使用,根据自己遇到的问题对相关概念作出说明
卷积-相关理论
笼统地说,卷积操作是通过滤波器对原图像进行特征提取的过程
其中涉及卷积核(kernel),步长(stride),填充(padding)等概念
最简例子
初次接触CNN时一般采用如下的例子来理解卷积操作的核心内容(即滤波器在图像上作用的过程)
假设现在有一张像素为5x5的图像与一个卷积核为3x3的滤波器,并且我们先考虑stride = 1;padding = 0的情况

【第一步】:将滤波器”放到”图像左上角,将对应位置的值相乘后得到3x3的矩阵,再对矩阵内所有元素求和,得到第一个值【150】

注:具体计算规则可以变化,此处相乘求和为常见处理方式
* 若先进行填充处理,如padding = 1,padding_mode = ‘zeros’,则如下图所示,从padding后图像的左上角处开始操作:

由于stride = 1,【第二步】我们将滤波器向右边移动一格,进行计算,得到第二个值【150】

本文介绍了卷积神经网络(CNN)的基础知识,包括卷积操作、多通道处理以及PyTorch中nn.Conv2d的主要参数。通过一个简单的CNN分类任务,展示了如何使用CNN进行特征提取并进行训练。内容涵盖了滤波器、步长、填充、输入和输出通道的关系,以及如何计算输出维度。
最低0.47元/天 解锁文章
6577

被折叠的 条评论
为什么被折叠?



