卷积操作的过程、参数说明、用CNN实现分类任务的代码

本文介绍了卷积神经网络(CNN)的基础知识,包括卷积操作、多通道处理以及PyTorch中nn.Conv2d的主要参数。通过一个简单的CNN分类任务,展示了如何使用CNN进行特征提取并进行训练。内容涵盖了滤波器、步长、填充、输入和输出通道的关系,以及如何计算输出维度。
摘要由CSDN通过智能技术生成

* 因为自己初学时候混淆过CNN中图像尺寸变化与通道数变化,本文从理论=>使用,根据自己遇到的问题对相关概念作出说明

卷积-相关理论

笼统地说,卷积操作是通过滤波器对原图像进行特征提取的过程

其中涉及卷积核(kernel),步长(stride),填充(padding)等概念

最简例子

初次接触CNN时一般采用如下的例子来理解卷积操作的核心内容(即滤波器在图像上作用的过程)

假设现在有一张像素为5x5的图像与一个卷积核为3x3的滤波器,并且我们先考虑stride = 1;padding = 0的情况

 【第一步】:将滤波器”放到”图像左上角,将对应位置的值相乘后得到3x3的矩阵,再对矩阵内所有元素求和,得到第一个值【150】

注:具体计算规则可以变化,此处相乘求和为常见处理方式

* 若先进行填充处理,如padding = 1,padding_mode = ‘zeros’,则如下图所示,从padding后图像的左上角处开始操作:

 由于stride = 1,【第二步】我们将滤波器向右边移动一格,进行计算,得到第二个值【150】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>