目录
(1)为什么要用缓存集群
(2)20万用户同时访问一个热点缓存
(3)基于流式计算的缓存热点自动发现
(4)热点缓存自动加载为JVM本地缓存
(5)限流熔断保护
(6)总结
这篇文章,跟大家讲讲站在一个程序员的角度,自己的后台架构应该如何抗住一天3个热点涌入的巨大流量!
(1)为什么要用缓存集群
其实使用缓存集群的时候,最怕的就是热key、大value这两种情况,那啥叫热key大value呢?
简单来说,热key,就是你的缓存集群中的某个key瞬间被数万甚至十万的并发请求打爆。大value,就是你的某个key对应的value可能有GB级的大小,导致查询value的时候导致网络相关的故障问题。
我们先来看看下面一幅图,假设你手头有个系统,他本身是集群部署的,然后后面有一套缓存集群,这个集群不管你用redis cluster,还是memcached,或者是公司自研缓存集群,都可以。

那么,这套系统用缓存集群干什么呢?
很简单,在缓存里放一些平时不怎么变动的数据,然后用户在查询大量的平时不怎么变动的数据的时候,不就可以直接从缓存里走了吗?
缓存集群的并发能力是很强的,而且读缓存的性能是很高的。举个例子,假设你每秒有2万请求,但是其中90%都是读请求,那么每秒1.8万请求都是在读一些不太变化的数据,而不是写数据。
那此时你把这些数据都放在数据库里,然后每秒发送2万请求到数据库上读写数据,你觉得合适吗?
当然不合适了,如果你要用数据库承载每秒2万请求的话,那么不好意思,你很可能就得搞分库分表 + 读写分离。
比如你得分3个主库,承载每秒2000的写入请求,然后每个主库挂3个从库,一共9个从库承载每秒1.8万的读请求。
这样的话,你可能就需要一共是12台高配置的数据库服务器,这是很耗费钱的,成本非常高,很不合适。
大家看看下面的图,来体会下这种情况。

本文探讨了缓存集群的重要性,特别是在处理大量并发读取时的效率。文章介绍了热点缓存问题,当大量用户同时访问同一热点缓存时可能导致系统崩溃。通过基于流式计算技术的热点自动发现和加载为JVM本地缓存,结合限流熔断保护,可以有效缓解这个问题。此外,文章强调了系统设计应根据实际情况,避免过度设计。
最低0.47元/天 解锁文章
840

被折叠的 条评论
为什么被折叠?



