[CF437E]The Child and Polygon

15 篇文章 0 订阅
14 篇文章 0 订阅

题目

传送门 to luogu

思路

区间 d p \tt dp dp 没啥好说的,我今天想聊一聊——代码的艺术

同一道题,一模一样的思路,有的人一遍打完就 A C \tt AC AC ,有的人对着一百多行的代码调试三天无果。是什么导致了这种差距?

是代码的艺术。

我以前一直觉得,思维非常非常重要。但是在省选赛场上,我 d a y 1    T 1 \tt day1\; T1 day1T1 直接调不出,导致考崩。这是血的教训。

什么才是真正的好代码?我说不出。对于不同的人,标准可能也完全不同。比如快速幂,我偏爱循环版,而宋队就喜欢递归版。

但是在某些处理上,我们应该向别人学习。就比如这道题。为了判断三角形是否合法,我写了一百多行,包括是否与点相交、是否与边相交、是否在多边形外,在第 16 16 16 W A \tt WA WA 了。至今不知错误原因。

当我打开题解时,它判断三角形是否合法却只有一句话:

if((a[r]-a[l])*(a[k]-a[l]) > 0)

显然这个条件不充分,它不能保证三角形是合法的。但,如果该三角形不合法,那么对应的 d p \tt dp dp 也会是 0 0 0 ,不会有任何影响。这才是把 d p \tt dp dp 数组用到了极致!

不服不行。

代码

此处贴上我冗长的代码,引以为戒。

#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
template < class T >
void getMax(T&a,T b){ if(a < b) a = b; }
template < class T >
void getMin(T&a,T b){ if(b < a) a = b; }

struct Point{
	int x, y;
	Point(int X=0,int Y=0):x(X),y(Y){}
	Point operator - (const Point &t) const {
		return Point(x-t.x,y-t.y);
	}
	long long operator * (const Point &t) const {
		return 1ll*x*t.y-1ll*t.x*y;
	}
	bool operator != (const Point &t) const {
		return x != t.x || y != t.y;
	}
};
struct Line{
	Point a, b;
	Line(Point A,Point B){
		a = A, b = B;
	}
};
long long absolute(long long x){
	return x < 0 ? -x : x;
}
int sgn(long long x){
	return x ? x/absolute(x) : 0;
}
bool onLine(const Point&,const Line&);
bool cross(const Line &p,const Line &q){
	if(onLine(q.a,p)
		or onLine(q.b,p)
		or onLine(p.a,q)
		or onLine(p.b,q))
			return true; // 有一个点相交
	if(sgn((q.a-p.a)*(p.b-p.a))
	* sgn((q.b-p.a)*(p.b-p.a)) != -1)
		return false;
	if(sgn((p.a-q.a)*(q.b-q.a))
	* sgn((p.b-q.a)*(q.b-q.a)) != -1)
		return false;
	if(max(p.a.x,p.b.x) < min(q.a.x,q.b.x))
		return false;
	if(max(p.a.y,p.b.y) < min(q.a.y,q.b.y))
		return false;
	if(max(q.a.x,q.b.x) < min(p.a.x,p.b.x))
		return false;
	if(max(q.a.y,q.b.y) < min(p.a.y,p.b.y))
		return false;
	return true;
}
bool onLine(const Point &p,const Line &l){
	if((l.a-l.b)*(p-l.b) == 0)
	if(absolute(p.x-l.a.x)
	+ absolute(p.x-l.b.x)
	== absolute(l.a.x-l.b.x))
	if(absolute(p.y-l.a.y)
	+ absolute(p.y-l.b.y)
	== absolute(l.a.y-l.b.y))
		return true;
	return false;
}
long long area(Point a,Point b,Point c){
	return absolute((b-a)*(c-a));
}

const int MaxN = 205;
const int Mod = 1000000007;
Point p[MaxN];
bool ok[MaxN][MaxN];
int dp[MaxN][MaxN];

bool check(int i,int j,int k){
	if(!ok[i][j] || !ok[j][k] || !ok[i][k])
		return false;
	for(int T=0; T<2; ++T){
		for(int d=1; d>=-1; d-=2)
			if(p[i+d] != p[j] && p[i+d] != p[k])
			if(area(p[i+d],p[j],p[i])
			+ area(p[i+d],p[j],p[k])
			+ area(p[i+d],p[k],p[i])
			== area(p[i],p[j],p[k]))
				return false; // △内
		swap(i,j);
	}
	return true;
}

int main(){
	int n = readint();
	for(int i=1; i<=n; ++i){
		p[i].x = readint()*4;
		p[i].y = readint()*4;
	}
	p[n+1] = p[1]; // 最后一条边
	p[0] = p[n]; // 防越界
	for(int i=1; i<=n; ++i)
	for(int j=1; j<=n; ++j){
		if(i == j) continue;
		ok[i][j] = true;
		Line t(p[i],p[j]);
		Point mid((t.a.x+t.b.x)>>1,
			(t.a.y+t.b.y)>>1|1);
		Line shot(Point(Mod,mid.y),mid);
		if(t.a.y == t.b.y){ // 水平线
			mid = Point((t.a.x+t.b.x)>>1|1,
				(t.a.y+t.b.y)>>1);
			shot = Line(Point(mid.x,Mod),mid);
		}
		int cnt = 0;
		for(int k=1; k<=n; ++k){
			if(k != i && k != j)
			if(onLine(p[k],t))
				ok[i][j] = false; // 在l上
// if(i == 9 && j == 10)
// printf("k = %d, ok = %d\n",k,ok[i][j]);
			if(k != i && p[k+1] != p[i])
			if(k != j && p[k+1] != p[j])
			if(cross(Line(p[k],p[k+1]),t))
				ok[i][j] = false;
			if(cross(Line(p[k],p[k+1]),shot)){
				++ cnt; // 撞到边界的次数
// printf("k = %d\n",k);
			}
// printf("k = %d, ok = %d\n",k,ok[i][j]);
		}
		if(i%n+1 != j && j%n+1 != i)
		if(cnt%2 == 0) // 在多边形外
			ok[i][j] = false;
// printf("cnt = %d\n",cnt);
// printf("ok[%d,%d] = %d\n",i,j,ok[i][j]);
	}
	for(int i=0; i<=n; ++i)
		dp[i][i+1] = 1; // 只有一条线
	for(int len=2; len<n; ++len)
	for(int i=1; i+len<=n; ++i)
	for(int j=i+1; j<i+len; ++j)
		if(check(i,j,i+len)){
			dp[i][i+len] += 1ll*dp[i][j]
				*dp[j][i+len]%Mod;
			dp[i][i+len] %= Mod;
// printf("	%d - %d - %d\n",i,j,i+len);
		}
	printf("%d\n",dp[1][n]);
	return 0;
}

不适配多边形的生成是解决不规则库存切割问题的重要部分。一个完整和健壮的不适配多边形生成算法应具备以下特点。 首先,算法应能够生成不适配多边形以最大程度地减少材料浪费。这意味着算法需要考虑到在切割过程中,尽量减少边界线重叠、留下无法切割利用的有价值的材料。为此,算法需要通过优化切割顺序和方向,以及合理选择切割起点和切割方式等策略,来实现最佳的材料利用率。 其次,算法需要具备较高的运行效率和计算准确性。库存切割问题往往涉及大量的材料和切割方案,因此算法的执行效率和计算复杂度很重要。一种高效的算法应能够在较短的时间内生成满足要求的不适配多边形,同时保证切割结果的准确性和可行性。 第三,算法需要兼容处理各种形状和尺寸的库存和需求。不同的库存形状和需求尺寸都可能导致不同的切割方案和不适配多边形的生成情况。因此,算法需要能够灵活处理各种可能的情况,并产生适用于不同情况的切割方案和多边形形状。 最后,算法应具备一定的可扩展性和可定制性。库存切割问题的具体情况可能因项目而异,因此算法需要能够根据不同的需求进行定制化的适配和调整。此外,算法应能够支持后续的改进和优化,以满足不断变化的需求和新的库存切割问题。 综上所述,一个完整和健壮的不适配多边形生成算法应该是能够高效、准确地生成适用于各种情况的切割方案和不适配多边形的解决方案,并具备一定的可扩展性和定制性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值