JDL降维STAP中的降维矩阵T推导 降维STAP算法的思路是:将空-时域回波信号通过DFT处理变换至角度-多普勒域,此时回波信号转换为频域信号,并且被划分为二维的角度通道和多普勒通道。然后通常论文会给出向量化的接收回波信号x,左乘降维矩阵T后得到降维后的接收回波信号;以及期望的空时导向矢量通过降维矩阵TxTTHxsTTHs通过以上描述,我一直认为降维矩阵T是NK×3维的选择矩阵,其中N是接收阵元数,K是脉冲数。所谓选择矩阵是除了选出来的3×3。
MVDR估计信号频率与波束形成过程的差异 根据上述表示,信号频率估计和方向图的差异在于:前者是改变。的信号可以无失真通过,因此曲线呈现出一个峰值。通过求解该优化问题,得到。最小来抑制其他频率信号和噪声,而约束。类似的,MVDR波束形成的优化问题为。外的其他成分被抑制,但是由于频率为。在此时会出现一个较大的值;全部被抑制,只会出现一个很小的值。中包含该频率成分,那么除了频率为。处,信号和噪声都被抑制;,形成了样本点那么多个权值。的成分能无失真通过,因此。中不包含该频率成分,那么。但此时作方向图时,先由。,形成了一个固定的权向量。中呢,两者有何区别?
MTD后多普勒频率对应速度坐标的转换 如果做了fftshift,那么相当于需要将0频率移至中心,速度轴坐标应为。,FFT点数为相干积累脉冲数CPI,于是MTD后的频率范围为。于是可以解得MTD后速度轴的坐标应为。再根据多普勒频率和速度的关系。那么,对于MTD而言,
通过频域点乘方式计算匹配滤波输出的距离坐标对应问题 的文章可知,通过频域点乘方式计算匹配滤波输出有三种方式,这里仅讨论前两种。第一种生成匹配滤波器的方式是对时域匹配滤波器进行fft变换,即将发射信号取共轭反转后进行fft;比如说64点的fft,峰值总是出现在33处。这是因为方法二在没有噪声的情况下,频域点乘后相位全为0,仅有幅度值。,与文中生成接收信号的方式有关,由于文中取了Rmin和Rmax,二者中点为R0。首先链接的文章也说了做fft补零是因为循环卷积和线性卷积的差异。可以看出,将方法二的结果点乘上。,根据方法一,匹配滤波器应为。处,仿真证明也是如此。
matlab 产生已知功率的复高斯白噪声及信噪比计算 假定已知噪声功率PnP_nPn,那么产生一个长度为NNN的复高斯白噪声代码为:n=sqrt(0.5∗Pn)∗(randn(1,N)+1jrandn(1,N)) n=sqrt(0.5*P_n) * (randn(1,N)+1jrandn(1,N)) n=sqrt(0.5∗Pn)∗(randn(1,N)+1jrandn(1,N))可以通过计算信号总能量除以信号长度验证该噪声的功率是否为PnP_nPn,即Pn=n∗n′/NP_n=n*n'/NPn=n∗n′/N...
雷达盲速和盲相的理解 雷达回波信号经过FIR一次对消器后的输出信号为:y(t)=2asin(πfdTr)sin(2πfdt−πfdTr+φ)y(t)=2a\sin (\pi {{f}_{d}}{{T}_{r}})\sin (2\pi {{f}_{d}}t-\pi {{f}_{d}}{{T}_{r}}+\varphi )y(t)=2asin(πfdTr)sin(2πfdt−πfdTr+φ)书上的原话为:“输出信号的振幅值为∣2asin(πfdTr)∣\left| 2a\sin (\pi {{f}_{d}}{{T
雷达盲速和盲相的理解 雷达回波信号经过FIR一次对消器后的输出信号为:y(t)=2asin(πfdTr)sin(2πfdt−πfdTr+φ)y(t)=2a\sin (\pi {{f}_{d}}{{T}_{r}})\sin (2\pi {{f}_{d}}t-\pi {{f}_{d}}{{T}_{r}}+\varphi )y(t)=2asin(πfdTr)sin(2πfdt−πfdTr+φ)书上的原话为:“输出信号的振幅值为∣2asin(πfdTr)∣\left| 2a\sin (\pi {{f}_{d}}{{T
多普勒速度模糊 多普勒模糊也称速度模糊,是在PD雷达中当发射脉冲信号频率为低或中脉冲重复频率时,由于采样频率较低而产生的不能准确测量目标多普勒频率的问题。具体原因如下:多普勒维的采样为慢时间采样,采样频率为脉冲重复频率frf_rfr。由奈奎斯特采样定理可知,其采样频率frf_rfr应大于被检测目标的最大多普勒频率的两倍。如果采样频率小于运动目标产生的最大多普勒频率的两倍,则会出现对多普勒频率波形的采样率不够大,导致速度模糊,于是推出最大不模糊多普勒频率为fdmax=fr/2f_{dmax}=f_r/2fdmax=f