Signal Processing Toolbox

MathWorks官网是个宝,没事就去逛逛兴许就能学到东西。MATLAB用户很多很多,但会去逛MathWorks官网的人并不多。官网有很多好东西,只是上面的内容实在太多了,在不熟悉官网架构的情况下要找到自己想要的东西有时候挺费劲的(这和TI的官网差不多),所以我会把有用的栏目都用浏览器收藏了,下回再翻就很方便了。

  1. Videos and Webinars视频和网络研讨会
  2. 直接查看相关工具箱的帮助文档和参考示例(如自动驾驶工具箱、相控阵工具箱、信号处理工具箱等等)
  3. 各种app(工具箱和app都有详尽的帮助文档,帮助文档中也会有参考示例)
  4. 借助MATLAB Answers解决问题
  5. File Exchange

APPLICATIONS

Signal Processing

RF and Mixed Signal

Autonomous Systems


雷达信号处理吸收了其他信号处理领域内很多相同的技术和概念,包括通信和声呐到语音和图像处理。线性滤波和统计检测理论是雷达最基本的任务-- 目标检测的核心。采用快速傅里叶变换技术实现的傅里叶变换在雷达信号处理中被广采用,包括匹配滤波器的快速卷积实现,多普勒估计、雷达成像等。雷达中采用基于模型的现代谱估计方法和自适应滤波技术进行波束形成和干扰抑制,采用模式识别技术进行目标和杂波鉴别和目标识别。

可以说数字信号处理是学习雷达信号处理的基础吧。那学习雷达信号处理之前需要先掌握哪些数字信号处理的基础知识呢?可参考下图。所以今天就来看看MATLAB的信号处理工具箱中都有些什么。这是信号处理工具箱的主页链接


目录

1.Machine Learning and Deep Learning for Signals

1.1 Preprocessing and feature extraction

1.2 Labeling and Dataset Management

1.3 Reference Examples

2.Signal Exploration and Preprocessing

2.1 Exploring Signals

2.2 Preprocessing data 

3. Feature Extraction and Signal Measurements

3.1 Descriptive Statistics

3.2 Pulse and Transition Metrics

3.3 Spectral Measurements

4. Filter Design and Analysis

4.1 Digital Filters

4.2 Analog Filters

5. Spectral Analysis

5.1 Spectral Estimation

5.2 Window functions

6. Time-Frequency Analysis

6.1 Time-frequency Distributions

6.2 Reassignment and Synchrosqueezing

6.3 Data adaptive transforms 

7. Vibration Analysis

8. Acceleration and Deployment

9. Latest Features

10 Documentation and Resources


1.Machine Learning and Deep Learning for Signals

1.1 Preprocessing and feature extraction

使用LSTM对ECG信号进行分类、使用深度学习的方法对信号进行处理。(这块没准后来能用到,就是对干扰信号进行分类)

1.2 Labeling and Dataset Management

Use the Signal Labeler app to label signals with attributes, regions, and points of interest. Create different types of labels and sublabels.

1.3 Reference Examples

Use examples to get started with machine learning and deep learning for signals.

2.Signal Exploration and Preprocessing

2.1 Exploring Signals

  • Use the Signal Analyzer app to analyze and visualize signals in the time, frequency, and time-frequency domains.

    使用Signal Analyzer app对信号在时间、频率和时频域进行分析和可视化。

  • Extract regions of interest from signals for further analysis.

    从信号中提取感兴趣的区域以便进一步分析。

2.2 Preprocessing data 

  • Denoise, smooth, and detrend signals to prepare them for further analysis.Remove outliers and spurious content from data.

    去噪、平滑和非趋势信号,为进一步分析做好准备。从数据中删除异常值和虚假内容

  • Enhance signals, visualize them, and discover patterns.Change the sample rate of a signal or make the sample rate constant for irregularly sampled signals or signals with missing data.

    增强信号,可视化它们,并发现模式。改变一个信号的采样率或使采样率为常数对于不规则采样信号或缺少数据的信号。

3. Feature Extraction and Signal Measurements

3.1 Descriptive Statistics

  • Compute common descriptive statistics like maxima, minima, standard deviations, and RMS levels.Find changepoints in signals and align signals using dynamic time warping.

    计算常见的描述性统计,如极大值、极小值、标准差和均方根。找到信号的变化点,并使用动态时间翘曲对齐信号。

  • Locate signal peaks and determine their height, width, and distance to neighbors.Measure time-domain features such as peak-to-peak amplitudes and signal envelopes.

定位信号峰值并确定它们的高度、宽度和与相邻信号的距离。测量时域特征,如峰到峰振幅和信号包络线

3.2 Pulse and Transition Metrics

  • Measure rise time, fall time, slew rate, overshoot, undershoot, settling time, pulse width, pulse period, and duty cycle.

    测量上升时间,下降时间,切换率,超调,欠调,建立时间,脉冲宽度,脉冲周期,和占空比。

3.3 Spectral Measurements

  • Compute the bandwidth and mean or median frequency for signals or power spectrum. Measure signal-to-noise ratio (SNR), total harmonic distortion (THD), and signal-to-noise and distortion ratio (SINAD).Measure harmonic distortion.

 计算信号或功率谱的带宽和平均或中值频率。测量信噪比(SNR)、总谐波失真(THD)和信噪失真比(SINAD)。测量谐波失真。

  • Estimate instantaneous frequency, spectral entropy, and spectral kurtosis.

估计瞬时频率、谱熵和谱峰度。

4. Filter Design and Analysis

4.1 Digital Filters

  • Design, analyze, and implement a variety of digital FIR and IIR filters, such as lowpass, highpass, and bandstop, using the Filter Designer app. Visualize magnitude, phase, group delay, impulse, and step responses.

    利用滤波器设计器应用程序设计、分析和实现各种数字FIR和IIR滤波器,如低通、高通和带阻。可视化幅度、相位、群延迟、脉冲和阶跃响应。

  • Examine filter poles and zeros.Evaluate filter performance by testing stability and phase linearity.Apply filters to data and remove delays and phase distortion using zero-phase filtering.

    检查滤波器极点和零。通过测试稳定性和相位线性来评估滤波器的性能。应用滤波器的数据和消除延迟和相位失真使用零相位滤波。

数字信号处理的重点内容之一就是滤波器的设计。这块内容是要牢牢掌握的。

4.2 Analog Filters

  • Design and analyze analog filters, including Butterworth, Chebyshev, Bessel, and elliptic designs.

    设计和分析模拟滤波器,包括巴特沃斯,切比雪夫,贝塞尔和椭圆设计。

  • Perform analog-to-digital filter conversion using discretization methods such as impulse invariance and the bilinear transformation.

    使用离散化方法如脉冲不变性和双线性变换来进行模数滤波器转换。

5. Spectral Analysis

5.1 Spectral Estimation

  • Estimate spectral density using nonparametric methods including the periodogram, Welch's overlapped segment averaging method, and the multitaper method.Implement parametric and subspace methods such as Burg’s, covariance, and MUSIC to estimate spectra.

    利用非参数方法估计谱密度,包括周期图,Welch的重叠段平均法,和多锥法。实现参数和子空间方法,如Burg 's,协方差,MUSIC。

谱估计分为现代普估计和传统谱估计,方法有参数化方法和非参数化方法。谱估计这是统计信号处理中的内容之一,也是要重点掌握的内容。

  • Compute power spectra of nonuniformly sampled signals or signals with missing samples using the Lomb-Scargle method.Measure signal similarities in the frequency domain by estimating spectral coherence.

利用Lomb-Scargle方法计算非均匀采样信号或缺失样本信号的功率谱。通过估计谱相干性来测量信号在频域的相似性。

5.2 Window functions

  • Implement and visualize common window functions.Use the Window Designer app to design and analyze windows.Compare mainlobe widths and sidelobe levels of windows as a function of their size and other parameters.

    实现和可视化常见的窗口函数。使用Window Designer应用程序来设计和分析窗口。比较窗口的主瓣宽度和旁瓣水平作为它们的大小和其他参数的函数。

6. Time-Frequency Analysis

6.1 Time-frequency Distributions

  • Use the short-time Fourier transform, spectrograms, or Wigner-Ville distributions to analyze signals with time-varying spectral content. Use the cross spectrogram to compare signals in the time-frequency domain.

使用短时傅里叶变换、光谱图或维格纳-维尔分布来分析具有时变光谱内容的信号。使用交叉谱图在时频域比较信号。

6.2 Reassignment and Synchrosqueezing

  • Use the reassignment technique to sharpen the localization of time-frequency estimates. Identify time-frequency ridges using synchrosqueezing.

使用重新分配技术来提高时频估计的局部化。使用同步压缩识别时频脊。

6.3 Data adaptive transforms 

  • Perform data-adaptive time-frequency analysis using empirical mode decomposition, variational mode decomposition and Hilbert-Huang transform.

使用经验模态分解、变分模态分解和Hilbert-Huang变换进行数据自适应时频分析。使用的emd函数位于工具箱的时频分析部分。

7. Vibration Analysis

8. Acceleration and Deployment

9. Latest Features

10 Documentation and Resources

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页