前言
效果如下,将下图喂到test程序内可得img1所示输出。
大作业要求
报告的主题是video based smoke detection,四人一组,一组交一份报告。
预先提供train、test两个数据集,内部有smoke和non两个文件夹,文件夹内有若干100*100大小的图片。
报告内容包括四部分:1、特征表示;2、降维及聚类;3、分类;4、模型评价及选择。
图片预处理
拿到图片集后,发现图片的是这样的(部分图片)。图片大小的统一的,都是100*100,但是图片的名字命名规则缺没有规律(也可能是有我没发现的规律), 图片读取十分不方便。
全选图片后,对任一个图片重命名,图片集实现了批量图片重命名,得到如下图所示的图片集:
可以看出所有图片的名字得到统一化,接下来通过程序读取图片集就变得简单啦。
以下是代码分析
训练集内所有烟雾图片和无烟雾图片分别读取到pos_list和neg_list列表内
PosNum = 688
NegNum = 817
pos_path = 'train\\smoke_mqa\\'
neg_path = 'train\\non_mqa\\'
#导入正、负图片集
for i in range(0,PosNum):
fileName = pos_path+'yw ('+str(i+1)+').jpg'
img = cv2.imread(fileName)
pos_list.append(img)
for i in range(0,NegNum):
fileName =neg_path+'no_yw ('+str(i+1)+').jpg'
img = cv2.imread(fileName)
neg_list.append(img)
将pos_list和neg_li