使用opencv进行角度测量

本文详细介绍了如何使用Python的OpenCV库实现图像上的角度测量。通过鼠标选择三点,程序能够计算并显示这三点所构成的角度。主要涉及鼠标事件处理、直线斜率计算和角度计算。在循环中,当鼠标点击三次时,程序调用角度计算函数,计算出最近的两个三角形的夹角,并在图像上标注出来。程序提供了完整的代码示例,便于读者理解和实践。
摘要由CSDN通过智能技术生成

本文介绍如何使用python语言实现角度测量,程序包括鼠标选点、直线斜率计算、角度计算三个子程序和一个主程序。最终实现效果:在图片上用鼠标确认三点,程序将会显示由此三点确定的角度,如下图所示。

1、鼠标选点

# -*- coding: utf-8 -*-

import cv2

path = "picture_mqa\\angle_measure.bmp"
img = cv2.imread(path)
pointsList = []

def mousePoints(event,x,y,flags,params):
    if event  == cv2.EVENT_LBUTTONDOWN:
        cv2.circle(img,(x,y),5,(0,0,255),cv2.FILLED)
        print(x,y)

while True:
    cv2.imshow('Image', img)
    cv2.setMouseCallback('Image',mousePoints)
    
    key_scan = cv2.waitKey(1) & 0xff 
    
    if key_scan == ord("q"):
        pointsList = []
        img = cv2.imread(path)
    elif key_scan == ord("s"):
        break
    
cv2.destroyAllWindows()  

while循环内cv2.setMouseCallback('Image',mousePoints)为鼠标中断触发事件的开启函数,作用是当在Image图片上鼠标触发中断事件时,程序跳转到mousePoints()中断服务函数内,并给mousePoints()的五个入口参数event,x,y,flags,params赋值。其中, event是cv2_EVENT_* (MouseEventTypes)类型的变量,为鼠标触发中断事件的类型;x和y为鼠标触发中断事件时在image图像的横纵坐标;flags是cv2_EVENT_FLAG_* (MouseEventFlags)类型的变量,为特殊中断事件的标志位;param是用户自定义的参数。本文的程序中使用 EVENT_LBUTTONDOW#左键点击触发事件,当鼠标左键点击时,标注该点并记录其坐标。

event的赋值:

        EVENT_MOUSEMOVE             #滑动
        EVENT_LBUTTONDOWN         #左键点击
        EVENT_RBUTTONDOWN        #右键点击
        EVENT_MBUTTONDOWN       #中键点击
        EVENT_LBUTTONUP               #左键放开
        EVENT_RBUTTONUP              #右键放开
        EVENT_MBUTTONUP              #中键放开
        EVENT_LBUTTONDBLCLK      #左键双击
        EVENT_RBUTTONDBLCLK     #右键双击
        EVENT_MBUTTONDBLCLK    #中键双击
 

2、角度计算 

由1可以得到鼠标点击位置处的坐标,我们将其放入pointList列表内。当列表内的坐标数目为3的倍数时调用getAngle()函数,计算出三点确定的两条直线的夹角。

def gradient(pt1,pt2):
    return ((pt2[1]-pt1[1])/(pt2[0]-pt1[0]))

def getAngle(pointsList):
    pt1,pt2,pt3 = pointsList[-3:] 
    m1 = gradient(pt1, pt2)
    m2 = gradient(pt1, pt3)
    angR = abs(math.atan((m2-m1)/(1+m2*m1)))
    angD = round(math.degrees(angR))
    
    cv2.putText(img,str(angD),(pt1[0]-40,pt1[1]-20),cv2.FONT_HERSHEY_COMPLEX,
                1.5,(0,0,255)) 

由直线的两点式方程可得直线的倾斜角为angle = arctan(y2-y1,x2-x1),则两条直线的夹角为angle0 =angle1-angle2 = arctan(y2-y1,x2-x1) - arctan(y2-y3,x2-x3)。以上函数便可根据三点的坐标值求其形成夹角的角度。

 3、完整程序

# -*- coding: utf-8 -*-
'''
测量鼠标点击过的三点形成的角度
'''
import cv2
import math

path = "picture_mqa\\angle_measure.bmp"  #图片路径
img = cv2.imread(path)
pointsList = []

#鼠标中断触发函数,将鼠标触发事件位置处描点并将该点的坐标值纪录入pointList列表内
#连接相邻三点使其形成一个夹角
def mousePoints(event,x,y,flags,params):
    if event  ==cv2.EVENT_LBUTTONDOWN:
        size = len(pointsList)
        if size != 0 and size%3 !=0:
            cv2.line(img,tuple(pointsList[round((size-1)/3)*3]),(x,y),(0,0,255))
        cv2.circle(img,(x,y),5,(0,0,255),cv2.FILLED)
        pointsList.append([x,y])

#由两点的坐标值计算两点所在直线的斜率        
def gradient(pt1,pt2):
    return ((pt2[1]-pt1[1])/(pt2[0]-pt1[0]))

#根据相邻的三点计算出其形成夹角的角度值
def getAngle(pointsList):
    pt1,pt2,pt3 = pointsList[-3:] 
    m1 = gradient(pt1, pt2)
    m2 = gradient(pt1, pt3)
    angR = abs(math.atan((m2-m1)/(1+m2*m1)))
    angD = round(math.degrees(angR))
    
    cv2.putText(img,str(angD),(pt1[0]-40,pt1[1]-20),cv2.FONT_HERSHEY_COMPLEX,
                1.5,(0,0,255))       


while True:
    cv2.imshow('Image', img) #图片显示
    cv2.setMouseCallback('Image',mousePoints) #鼠标触发事件开启
    
    if len(pointsList) % 3 ==0 and len(pointsList)!=0: #鼠标每触发中断3次计算一次其形式夹角的角度值
        getAngle(pointsList)
    
    key_scan = cv2.waitKey(1) & 0xff #键盘扫描
    if key_scan == ord("q"):  #输入'q'时图片刷新
        pointsList = []
        img = cv2.imread(path)
        
    elif key_scan == ord("s"): #输入's'时退出程序
        break
    
cv2.destroyAllWindows()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值