1动态规划的递归写法和递归推法
动态规划(Dynamic Programming, DP) 是一种用来解决一类最优化问题的算法思想。简单来说,动态规划将一一个 复杂的问题分解成若千个子问题,通过综合子问题的最优解来得到原问题的最优解。需要注意的是,动态规划会将每个求解过的子问题的解记录下来,这样当下一次碰到同样的子问题时,就可以直接使用之前记录的结果,而不是重复计算。注意:虽然动态规划采用这种方式来提高计算效率,但不能说这种做法就是动态规划的核心^(后面会说明这一点)。
一般可以使用递归或者递推的写法来实现动态规划,其中递归写法在此处又称作记忆化搜索。
1.1动态规划的递归写法
先来讲解递归写法。通过这部分内容的学习,读者应能理解动态规划是如何记录子问题的解,来避免下次遇到相同的子问题时的重复计算的。
以斐波那契(Fibonacci) 数列为例,斐波那契数列的定义为E =1,F=1,F=F-+F-2(n≥2)。在4.3节中是按下面的代码来计算的:
int F(int n){
if(n==0||n==1)
return 1;
else
return F(n-1)+F(n-2);
}
事实上,这个递归会涉及很多重复的计算。如图11-1所示,当n=5时,可以得到F(5)= F(4)+ F(3), 接下来在计算F(4)时又会有F(4)= F(3)+ F(2)。 这时候如果不采取措施,F(3)将会被计算两次。可以推知,如果n很大,重复计算的次数将难以想象。事实上,由于没有及时保存中间计算的结果,实际复杂度会高达O(2^n),即每次都会计算F(n- 1)和F(n - 2)这两个分支,基本不能承受n较大的情况。
为了避免重复计算,可以开一个一-维数组dp,用以保存已经计算过的结果中dp[n]记录F(n)的结果,并用dp[n]=-1表示F(n)当前还没被计算过。
int dp[MAXN];
memset(a,-1,sizeof(a));//注意memset在<string>中,且只能赋值0或-1;
然后就可以在递归当中判断dp[n]是否是-1:如果不是-1,说明已经计算过F(n),直接返回dp[n]就是结果;否则,按照递归式进行递归。代码如下:
int F(int n){
if(n==0||n==1)
return 1;
if(dp[n]!=-1)
return dp[n];
else
{
dp[n]=F(n-1)+F(n-2);
return dp[n];
}
}
这样就把已经计算过的内容记录了下来,于是当下次再碰到需要计算相同的内容时,就能直接使用上次计算的结果,这可以省去大半无效计算,而这也是记忆化搜索这个名字的由来。如图11-2所示,通过记忆化搜索,把复杂度从0(2")降到了O(n),也就是说,用一个O(n)空间的力量就让复杂度从指数级别降低到了线性级别。
通过上面的例子可以引申出一个概念:如果-一个问题可以被分解为若千个子问题,且这些子问题会重复出现,那么就称这个问题拥有重叠子问题(Overlapping Subproblems)。 动态规划通过记录重叠子问题的解,来使下次碰到相同的子问题时直接使用之前记录的结果,以此避免大量重复计算。因此,一个问题必须拥有重叠子问题,才能使用动态规划去解决。
1.3动态规划的递推写法
以经典的数塔问题为例,将一些数字排成数塔的形状,其中第- -层有一个数字,第二层有两个数字…第n层有n个数字。现在要从第- -层走到第n层,每次只能走向下一层连接的两个数字中的一个,问:最后将路径上所有数字相加后得到的和最大是多少?
按照题目的描述,如果开一个二维数组f,其中fi]i]存f[1][1]=5, f[2][1]= 8, f[2][2]=3, f[3][1]= 12,… f[5][4]=9, f[5][5]=4。
此时,如果尝试穷举所有路径,然后记录路径上数字和的最大值,那么由于每层中 8 3的每个数字都会有两条分支路径,因此可以得到时间复杂度为0(2"),这在n很大的情况 16下是不可接受的。那么,产生这么大复杂度的原因是什么?下面来分析一下。
一开始,从第一层的5出发,按5→8→7的路线来到7,并枚举从7出发的到达最底 9 5 3 9 4层的所有路径。但是,之后当按5→3→7的图11-3 数塔问题示意图路线再次来到7时,又会去枚举从7出发的到达最底层的所有路径,这就导致了从7出发的到达最底层的所有路径都被反复地访问,做了许多多余的计算。事实上,可以在第一次枚举从7出发的到达最底层的所有路径时就把路径上能产生的最大和记录下来,这样当再次访问到7这个数字时就可以直接获取这个最大值,避免重复计算。
由上面的考虑,不妨令dp[i][j]表示从第i行第j个数字出发的到达最底层的所有路径中能得到的最大和,例如dp[3][2]就是图中的7到最底层的路径最大和。在定义这个数组之后,dp[1][1]就是最终想要的答案,现在想办法求出它。
注意到一个细节:如果要求出“从位置(1, 1)到达最底层的最大和”dp[1][1],那么一-定要先求出它的两个子问题“从位置(2, 1)到达最底层的最大和dp[2][1]”和“从位置(2, 2)到达最底层的最大和dp[2][2]”,即进行了一次决策:走数字5的左下还是右下。于是dp[1][1]就是dp[2][1]和dp[2][2]的较大值加上5。写成式子就是:
dp[1][1]= max(dp[2][1],dp[2][2])+ f[1][1]
由此可以归纳得到这么一一个信息:如果要求出dp[i][i],那么- -定要先求出它的两个子问题“从位置(i + 1, j)到达最底层的最大和dp[i+ 1][i]” 和“从位置(i + 1,j+ 1)到达最底层的最大和dp[i+ 1][j+ 1]”,即进行了一次决策:走位置(i, j)的左下还是右下。于是dp[i][i]就是dp[i+ 1][i]和dp[i+ 1][ + 1]的较大值加上f[i][i]。写成式子就是:
dp[i][j]= max(dp[i + 1][j],dp[i+ 1l[j+ 1])+ f[i][ij]
把dp[i][i]称为问题的状态,而把上面的式子称作状态转移方程,它把状态dp[i]ij]转移为dp[i+1][i]和dp[i+1][i+1]。可以发现,状态dp[i][j]只与第i + 1层的状态有关,而与其他层的状态无关,这样层号为i的状态就总是可以由层号为i+ 1的两个子状态得到。那么,如果总是将层号增大,什么时候会到头呢?可以发现,数塔的最后一-层的dp值总是等于元素本身,即dp[n]ij] = f[n][i] (1≤j≤n),把这种可以直接确定其结果的部分称为边界,而动态规划的递推写法总是从这些边界出发,通过状态转移方程扩散到整个dp数组。
这样就可以从最底层各位置的dp值开始,不断往上求出每一层各位置的 dp值,最后就会得到dp[1][1],即为想要的答案。下面根据这种思想写出动态规划的代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=1000;
int f[maxn][maxn],dp[maxn][maxn];
int main()
{
int n;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
scanf("%d",&f[i][j]);//输入数塔
for(int j=1;j<=n;j++)
dp[n][j]=f[n][j];//输入边界;
//从n-1层不断往上计算出dp[i][j];
for(int i=n-1;i>=1;i--)
{
for(int j=1;j<=n;j++)
//状态转移方程
{
dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+f[i][j];
}
}
printf("%d\n",dp[1][1]);//dp[1][1]即为需要的答案
return 0;
}
显然,使用递归也可以实现上面的例子(即从dp[1][1]开始递归,直至到达边界时返回结果)。两者的区别在于:使用递推写法的计算方式是自底向上(Bottom-up Approach),即从边界开始,不断向上解决问题,直到解决了目标问题;而使用递归写法的计算方式是自顶向下(Top-down Approach),即从目标问题开始,将它分解成子问题的组合,直到分解至边界为止。
通过上面的例子再引申出一个概念:如果一个问题的最优解可以由其子问题的最优解有效地构造出来,那么称这个问题拥有最优子结构(Optimal Substructure)。最优子结构保证了动态规划中原问题的最优解可以由子问题的最优解推导而来。因此,一个问题必须拥有最优子结构,才能使用动态规划去解决。例如数塔问题中,每-一个位置的dp值都可以由它的两个子问题推导得到。
至此,重叠子问题和最优子结构的内容已介绍完毕。需要指出,一个问题必须拥有重叠子问题和最优子结构,才能使用动态规划去解决。、下面指出这两个概念的区别:
①分治与动态规划。分治和动态规划都是将问题分解为子问题,然后合并子问题的解得到原问题的解。但是不同的是,分治法分解出的子问题是不重叠的,因此分治法解决的问题不拥有重叠子问题,而动态规划解决的问题拥有重叠子问题。例如,归并排序和快速排序都是分别处理左序列和右序列,然后将左右序列的结果合并,过程中不出现重叠子问题,因此它们使用的都是分治法。另外,分治法解决的问题不一- 定是最优化问题,而动态规划解决的问题一-定是最优化问题。
②贪心与动态规划。贪心和动态规划都要求原问题必须拥有最优子结构。二者的区别在于,贪心法采用的计算方式类似于上面介绍的“自顶向下”,但是并不等待子问题求解完毕后再选择使用哪一一个,而是通过一种策略直接选择-一个子 问题去求解,没被选择的子问题就不去求解了,直接抛弃。也就是说,它总是只在上一步选择的基础上继续选择,因此整个过程以一"种单链的流水方式进行,显然这种所谓“最优选择”的正确性需要用归纳法证明。例如对数塔问题而言,贪心法从最上层开始,每次选择左下和右下两个数字中较大的一个,一直到最底层得到最后结果,显然这不一定可以得到最优解。而动态规划不管是采用自底向上还是自顶向下的计算方式,都是从边界开始向上得到目标问题的解。也就是说,它总是会考虑所有子问题,并选择继承能得到最优结果的那个,对暂时没被继承的子问题,由于重叠子问题的存在,后期可能会再次考虑它们,因此还有机会成为全局最优的一部分,不需要放弃。所以贪心是一种壮士断腕的决策,只要进行了选择,就不后悔;动态规划则要看哪个选择笑到了最后,暂时的领先说明不了什么。