Tialyg
码龄6年
关注
提问 私信
  • 博客:59,946
    59,946
    总访问量
  • 47
    原创
  • 889,476
    排名
  • 13
    粉丝

个人简介:努力提升中… 读研ing

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:英国
  • 加入CSDN时间: 2018-05-23
博客简介:

qq_42292095的博客

查看详细资料
个人成就
  • 获得69次点赞
  • 内容获得11次评论
  • 获得163次收藏
  • 代码片获得366次分享
创作历程
  • 20篇
    2022年
  • 31篇
    2021年
成就勋章
TA的专栏
  • 笔记
    29篇
  • 实战
    19篇
  • LeetCode
    4篇
  • 时序数据预测
    2篇
  • 蓝桥杯
    4篇
  • oj系统
    1篇
兴趣领域 设置
  • 人工智能
    计算机视觉机器学习人工智能深度学习神经网络pytorch边缘计算聚类迁移学习分类回归
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

181人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

pandas中的时序数据分组运算及非常全面的常规数据处理代码

这篇为纯记录(留下痕迹,日后好相见)实战:pandas中的时序数据分组运算-详解
原创
发布博客 2022.06.30 ·
352 阅读 ·
2 点赞 ·
1 评论 ·
1 收藏

快速用浏览器在线查看.ipynb文件

即可复制到浏览器用jupyter notebook打开简单方便
原创
发布博客 2022.06.30 ·
2017 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

集成学习理论梳理-bagging、boosting

1.baggingBagging 的思路是所有基础模型都一致对待,每个基础模型手里都只有一票。然后使用民主投票的方式得到最终的结果。具体过程:2.boostingBoosting 和 bagging 最本质的差别在于他对基础模型不是一致对待的,而是经过不停的考验和筛选来挑选出「精英」,然后给精英更多的投票权,表现不好的基础模型则给较少的投票权,然后综合所有人的投票得到最终结果。具体过程:3.bagging与boosting区别样本选择上:Bagging:训练集是在原始集中有放回选取的,
原创
发布博客 2022.06.30 ·
403 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【python】python文件操作

2.read()、readline() 、readlines()3.write()、writelines( )write()要写入字符串writelines()既可以传入字符串又可以传入一个字符序列,并将该字符序列写入文件。 注意必须传入的是字符序列,不能是数字序列。4. f.close() f.closed()5.with open as f打开方法这种打开文件的方式不用写f.closed关闭文件6.f.encoding取文件打开的编码【推荐阅读】【推荐阅读】示例:......
原创
发布博客 2022.06.28 ·
280 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Latex中文模板-计算机学报

发布资源 2022.06.27 ·
zip

k-means算法可视化

K-Means是一种聚类(Clustering)算法,使用它可以为数据分类。K代表你要把数据分为几个组
原创
发布博客 2022.06.27 ·
4515 阅读 ·
3 点赞 ·
1 评论 ·
58 收藏

Leetcode14天算法入门-Day4双指针

编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。557. 反转字符串中的单词 III给定一个字符串 s ,你需要反转字符串中每个单词的字符顺序,同时仍保留空格和单词的初始顺序。...
原创
发布博客 2022.06.27 ·
141 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Leetcode14天算法入门-Day3双指针

给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。请注意 ,必须在不复制数组的情况下原地对数组进行操作。示例 1:输入: nums = [0,1,0,3,12]输出: [1,3,12,0,0]思路及解法使用双指针,左指针指向当前已经处理好的序列的尾部,右指针指向待处理序列的头部。右指针不断向右移动,每次右指针指向非零数,则将左右指针对应的数交换,同时左指针右移。注意到以下性质:左指针左边均为非零数;右指针左边直到左指针处均为零。因此每次交换,都是将
原创
发布博客 2022.06.26 ·
147 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Leetcode14天算法入门-Day2双指针

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。示例 1:输入:nums = [-4,-1,0,3,10]输出:[0,1,9,16,100]解释:平方后,数组变为 [16,1,0,9,100]排序后,数组变为 [0,1,9,16,100]法1:暴力解题法2:双指针 归并排序设置正数和负数一个界限neg法3:双指针同样地,我们可以使用两个指针分别指向位置 0 和 n−1,每次比较两个指针对应的数,选择较大的那个逆序放入答案并移动
原创
发布博客 2022.06.24 ·
165 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Leetcode14天算法入门-Day1二分查找

力扣Python14天入门算法
原创
发布博客 2022.06.22 ·
119 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

[蓝桥杯]-算法训练组-python

文章目录1.印章1.印章问题描述  共有n种图案的印章,每种图案的出现概率相同。小A买了m张印章,求小A集齐n种印章的概率。输入格式  一行两个正整数n和m输出格式  一个实数P表示答案,保留4位小数。此题采用动态规划(Dynamic Programming,DP)的方法求解,动态规划的三要素:最优子结构、边界和状态转移函数。最优子结构:每个阶段的最优状态可以从之前某个阶段的某个或某些状态直接得到边界:问题最小子子集的解(初始范围)状态转移函数:从一个阶段向另一个阶段过度的具体形式
原创
发布博客 2022.04.14 ·
220 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

[时序数据趋势预测]论文阅读思考总结[2022.3.25-2022.4.1]

文章目录1.时序数据预测为什么要用LSTM网络?1.时序数据预测为什么要用LSTM网络?在使用深度学习处理时序数据时,RNN是经常用到的模型之一。在深度学习领域中(尤其是RNN),“长期依赖“问题是普遍存在的。长期依赖产生的原因是当神经网络的节点经过许多阶段的计算后,之前比较长的时间片的特征已经被覆盖,导致产生梯度消失/爆炸。处理梯度爆炸可以采用梯度截断的方法。所谓梯度截断是指将梯度值超过阈值θ \thetaθ的梯度手动降到θ \thetaθ 。梯度消失不能简单的通过类似梯度截断的阈值式方法来解决
原创
发布博客 2022.04.14 ·
1368 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

[时间序列趋势预测]前期知识汇总

文章目录1.降维方法2.回声状态网络(ESN)3.LSTM网络4.PSO算法(粒子群优化算法)过程5.Adam算法6.RMSprop算法-优化算法7.迁移学习中特征向量提取以及微调8.FdeAVG算法在阅读论文《基于改进联邦学习的时序数据趋势跟踪及应用_胡尧》时涉及到的算法,仅次记录1.降维方法机器学习中会用到降维方法,常用的降维方法有两种:PCA(主成分分析)和SVD(奇异值分解)SVD奇异值分解作为一个很基本的算法,在很多机器学习算法中都有它的身影。SVD奇异值分解是线性代数中一种重要的矩阵分解
原创
发布博客 2022.03.23 ·
1967 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

[蓝桥杯]-基础练习组-python

文章目录1.A+B2. 数列排序3.16进制转化为8进制4. 十六进制转十进制5.十进制转十六进制6.特殊回文数7.回文数8.特殊的数字9.杨辉三角形10.查找整数11 数列特征12.字母图形 找规律13.01字串14.闰年判断15.Fibonacci数列16. 圆的面积17. 序列求和1.A+BA,B=map(int,input().split())C=A+Bprint(C)2. 数列排序lst1 = []n = int(input())lst2 = input().split(' ')
原创
发布博客 2022.03.09 ·
928 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【RL】第八章-基于模型的规划与学习-Dyna算法

文章目录8.1 环境的模型8.2 整合了学习与规划的RL学习算法—Dyna算法8.3 基于模拟的搜索8.3.1 简单蒙特卡罗搜索8.3.2 蒙特卡罗树搜索Dyna算法编程8.1 环境的模型8.2 整合了学习与规划的RL学习算法—Dyna算法Dyna 算法从实际经历中学习得到模型,同时联合使用实际经历和基于模型采样得到的虚拟经历来学习和规划,更新价值和 (或) 策略函数基于行为价值的 Dyna-Q 算法的流程如算法 7所述。8.3 基于模拟的搜索在强化学习中,基于模拟的搜索 (simulati
原创
发布博客 2022.02.18 ·
1039 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【RL】第七章-DPG基于策略梯度的深度强化学习

文章目录简介基于策略学习的意义策略目标函数演员-评论家算法深度确定性策略梯度(DDPG)编程-DDPG算法的实现简介仅此记录大体框架供自己学习使用,格式因此随意基于策略学习的意义策略目标函数演员-评论家算法深度确定性策略梯度(DDPG)编程-DDPG算法的实现好文章推荐...
原创
发布博客 2022.02.18 ·
322 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【RL】同策略(on-policy)与异策略(off-policy)

文章目录同策略on-policy异策略off-policy同策略、异策略区别Sarsa:同策略时序差分控制Q-learning:异策略时序差分控制同策略on-policy异策略off-policy同策略、异策略区别Sarsa:同策略时序差分控制Q-learning:异策略时序差分控制...
原创
发布博客 2022.01.28 ·
1627 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【ML】在线学习(Online learning)与离线学习(Offline learning)

文章目录
转载
发布博客 2022.01.28 ·
3536 阅读 ·
2 点赞 ·
1 评论 ·
19 收藏

【RL】基于神经网络(深度学习)的Q学习算法(DQN)

文章目录DQN介绍DDQN介绍编程-基于Pytorch实现DQN求解PuckWorld问题PuckWorld环境介绍:DQN介绍DQN(Deep Q-Learning)是将深度学习与强化学习相结合,当Q-table他过于庞大无法建立的话,使用DQN是一种很好的选择。DQN算法主要使用经历回放(experience replay)(经验池)来实现价值函数的收敛。使用Deep Q-learning方法,从每一episode中得到的奖励来迭代更新Q(s,a). DQN算法中,(具体方法后续更出)继将每一
原创
发布博客 2022.01.28 ·
3262 阅读 ·
1 点赞 ·
1 评论 ·
11 收藏

【RL】预测与控制问题

文章目录预测控制预测预测问题:最终基于某一策略最终价值函数Vπ(S)\begin{array}{c}V_{\pi }(S) \end{array}Vπ​(S)​或Qπ(S,A)\begin{array}{c}Q_{\pi } (S,A)\end{array}Qπ​(S,A)​控制控制问题:找到最优价值函数V∗(S)或Q∗(S,A)\begin{array}{c}V_{*} (S) 或 Q_{*} (S,A)\end{array}V∗​(S)或Q∗​(S,A)​PS:以后学习过程中不断
原创
发布博客 2022.01.27 ·
1209 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多