概率分布及共轭先验

申明:

        本博客仅作为博主的学习笔记,转载自CSDN博主:__鸿

原文链接:

        https://blog.csdn.net/u014313009/article/details/50849694/

1.二值变量的概率分布

  1.1 伯努利分布(Bernouli distribution)

  1.2 二项分布(Binomial distribution)

 注:对于小的数据集,如果对二项分布采用极大似然估计,会得到过拟合(over-fitting)的估计结果。可以采用贝叶斯的方法,引入共轭先验分布(conjugate prior distribution)来解决这个问题。共轭先验,其方法是选取一个与似然函数共轭的先验分布,其目的是使得后验分布与先验分布有同样的函数形式。

1.3 Beta分布

 2.多项式变量的概率分布

 2.1 多项式分布(Multinomial distribution)

 2.2 狄利克雷分布(Dirichlet distribution)

 3.高斯分布(Gaussian distribution)

 3.1 条件高斯分布

 3.2 边缘概率分布(Marginal Gaussian distribution)

 3.3 高斯变量的贝叶斯理论

 3.4 高斯最大似然估计

 3.5 顺序估计(Sequential estimation)

 3.6 高斯分布的贝叶斯推理

 3.6.1 单变量高斯分布

(1)方差已知,均值未知待估计:

 (2)均值已知,方差未知待估计:

 (3)均值和方差均未知待估计:

 3.6.2 多变量高斯分布

(1)方差已知,均值未知待估计:           共轭先验仍为高斯分布

(2)均值已知,方差未知待估计:          共轭先验为Wishart分布,形式如下

 (3)均值和方差均未知待估计:

 总结:

各分布与其共轭分布对应表
/       分布共轭分布
/二项分布Bin(m|N,\mu )Beta分布Beta(\mu|a,b)
/多项式分布Mult(m_1,m_2,...,m_K|\mu,N)Dirichlet分布Dir(\mu|\alpha)
单变量\sigma已知,\mu未知的高斯分布高斯分布N(\mu|\mu_0,\sigma_{0}^{2}))
\mu已知,\sigma未知的高斯分布

 Gamma分布Ga(\lambda|a,b)

\sigma\mu均未知的高斯分布高斯-Gamma分布
多变量

 \sigma已知,\mu未知的高斯分布

高斯分布

 \mu已知,\sigma未知的高斯分布

WishartW(\Lambda |W,\nu )

 \sigma\mu均未知的高斯分布

高斯-Wishart分布

                注:高斯分布中的\lambda为精度,与\sigma的关系如下:\lambda=\frac{1}{\sigma^2}对于均值已知,方差未知的高斯分布,若不使用精度\lambda进行计算,而是直接考虑方差本身,则其共轭分布为Inverse Gamma,即逆Gamma分布。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值