线性回归

5.31 线性回归

最小二乘法

找到合适的参数,使残差平方和最小

(残差:拟合结果和实际值的差)平方和

二元函数最小化:

必要条件:偏导数=0(不能保证处于最小值,且只有一个极值点)

解线性方程组,求得待定系数

用线性代数实现最小二乘法

解线性方程组

m = y -Xa

<=>求mmT最小值

->求自变量为向量的函数的最小值

如何使回归方程更准确

  1. 回归方程的形式应准确:线性回归必须要求是线性关系
  2. 全部影响因素都应考虑到
  3. 不相干的因素不应被纳入模型
  4. 采集的样本数据应当准确

一致性:样本越大,越精准

无偏性:期望

有效性:在满足无偏性的条件下,标准差越小越有效(离散程度越小越有效)

不满足线性性的处理方法:对数变换,倒数变换,平方根变换

SPSS实现线性回归

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值