矩阵的逆

求矩阵的逆

  • 待定系数 AX = I

=> (A | I) --> ( I | A-1)

【注】

  1. (A|E) 因为左边是E不可能化简出全0行,不可能有无数解

  2. 何时无解?系数矩阵化为行最简时有0行

  3. Q: 只右乘,得到右逆
    A: 定理:如果一个方阵A有右逆B,则B也是A的左逆,即B是A的逆

我的实现

    def inv(self):
        """返回矩阵的逆"""
        self._forward()
        self._backward()
        return [row.underlying_list()[self._col_num:] for row in self.Ab]

测试:

    # 7-2 实现矩阵的逆
    A72 = Matrix([
        [1, 2],
        [3, 4]
    ])
    b72 = Matrix([
        [1, 0],
        [0, 1]
    ])
    ls72 = LinearSystem(A72, b72)
    ls72.fancy_print()
    Inv = ls72.inv()
    print(Inv)

初等矩阵

用矩阵表示操作:

左乘行变换,右乘列变换

  • 三种初等矩阵:对单位矩阵进行一次初等变换

{ E i j E i ( k ) E i j ( k ) \left\{ \begin{array}{lr} E_{ij}\\E_i(k)\\E_{ij}(k) \end{array} \right. EijEi(k)Eij(k)

【注】 E i j ( k ) E_{ij}(k) Eij(k) 第j行的k倍加到第i行上,或将第i列的k倍加到第j列上

  • 行最简矩阵:
    E p , . . . E 3 ⋅ E 2 ⋅ E 1 ⋅ A = r r e f ( A ) E_p, ... E_3· E_2 · E_1 · A = rref(A) Ep,...E3E2E1A=rref(A)

初等矩阵和可逆性

{ E i j − 1 = E j i E i ( k ) − 1 = E i ( 1 k ) E i j ( k ) − 1 = E i j ( − k ) \left\{\begin{array}{lr}\\ E_{ij}^{-1} = E_{ji} \\ E_i(k)^{-1} = E_i(\frac{1}{k})\\ E_{ij}(k)^{-1} = E_{ij}(-k) \end{array}\right. Eij1=EjiEi(k)1=Ei(k1)Eij(k)1=Eij(k)

  • (A | I) --> (I | A -1) 的解释:

Ep, … E3· E2 · E1 · A = rref(A) = I

Ep, … E3· E2 · E1 · A · A -1 = I · A-1

Ep, … E3· E2 · E1 · I = A-1

【解释】对A做一系列初等行变换 E i E_i Ei得到单位矩阵I,如果将这些初等行变换同样施加给单位矩阵就会得到 A − 1 A^{-1} A1

  • 矩阵的逆的作用:
    对线性系统:Ax = b ⇒ \Rightarrow x = A-1 · b
    在A不变,b不断变化的环境,效率更高,可以先求出A-1

由 矩阵的逆 可得到的等价命题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值