线性相关/无关

本文介绍了线性组合的概念,强调了线性相关和线性无关的区别,指出线性相关意味着存在一个向量可以通过其他向量的线性组合表示,而线性无关则表示所有向量都无法如此表示。还讨论了矩阵的逆与线性相关的关系,当向量数量大于维度时,通常会线性相关。此外,解释了生成空间的概念,指出至少需要n个线性无关的向量来生成n维空间,并定义了基的性质和寻找基的方法。最后,对空间的非标准正交基及其作用进行了简要总结。
摘要由CSDN通过智能技术生成

线性组合

只用两个基本运算 “向量加法,变量乘法(数乘)” 得到的向量

矩阵空间下的坐标(任一向量):基向量的线性组合

A * (x, y) T

线性相关/无关

线性相关:存在一组不全为0的k使:

k 1 α 1 + k 2 α 2 + . . . + k n α n = 0 k_1 \alpha_1 + k_2 \alpha_2 + ... + k_n \alpha_n = 0 k1α1+k2α

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值