坐标转换和线性变换

本文介绍了空间坐标系的转换,包括从其他坐标系到标准坐标系的转换,以及任意两个坐标系之间的转换方法。同时阐述了线性变换的概念,强调线性变换在3D到2D图形学、2D到3D计算机视觉以及信息压缩中的应用。
摘要由CSDN通过智能技术生成

一个空间的不同基的转换

空间的基 和 坐标系

一一对应

坐标(用基线性表示的系数): ( c 1 , c 2 . . . c n ) T 记 为 : [ x ⃗ ] ε (c_1, c_2 ... c_n)^T 记为: [\vec{x}]_\varepsilon (c1,c2...cn)T:[x ]ε

标准基(Standard Basis): ε = { e ⃗ 1 , e ⃗ 2 , . . . e ⃗ n } \varepsilon = \{\vec{e}_1, \vec{e}_2, ... \vec{e}_n\} ε={ e 1,e 2,...e n}

标准正交基(Orthonormal Basis)

正交基(Orthogonal Basis)

坐标系的转换

其他坐标系与标准坐标系的转换:

n维空间的一组基: B = { b ⃗ 1 , b ⃗ 2 . . . b ⃗ n } B = \{\vec{b}_1, \vec{b}_2 ... \vec{b}_n\} B={ b 1,b 2...b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值