行列式

本文介绍了行列式的概念,包括它的四大基本性质,如交换行、加法和乘法的性质,以及行列式与矩阵逆的关系。阐述了计算行列式的方法,如通过Gauss消元法,并提到行列式的值与矩阵可逆性的关系。此外,还讨论了行列式的代数表达和Cramer法则在求解线性方程组中的应用。
摘要由CSDN通过智能技术生成

6.8 行列式 (determinant)

行列式是方阵的一个属性

行列式描述的是:n个向量围成的“有向面积”,来刻画这组向量(基)

(将A映射到一个纯量)

det ():按行排列(a,b),(c,d)

det ⁡ ( a b c d ) \det{\left( \begin{matrix} a & b \\ c & d \end{matrix}\right)} det(acbd)

行列式求法:面积 --> 割补法

行列式的四大基本性质

一、 det ⁡ I = 1 \det{ I} = 1 detI=1

二、交换两行,det 值取反

三、加法:方阵某一行 * k,其对应的行列式也缩放k倍

【注】: d e t ( k A ) = k n d e t ( A ) det(kA) = k^n det(A) det(kA)=kndet(A)

四、乘法:方阵某一行加一行数,可以拆分成两个行列式的和

【注】: det ⁡ ( a + x b + y c d ) = det ⁡ ( a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值