6.8 行列式 (determinant)
行列式是方阵的一个属性
行列式描述的是:n个向量围成的“有向面积”,来刻画这组向量(基)
(将A映射到一个纯量)
det ():按行排列(a,b),(c,d)
det ( a b c d ) \det{\left( \begin{matrix} a & b \\ c & d \end{matrix}\right)} det(acbd)
行列式求法:面积 --> 割补法
行列式的四大基本性质
一、 det I = 1 \det{ I} = 1 detI=1
二、交换两行,det 值取反
三、加法:方阵某一行 * k,其对应的行列式也缩放k倍
【注】: d e t ( k A ) = k n d e t ( A ) det(kA) = k^n det(A) det(kA)=kndet(A)
四、乘法:方阵某一行加一行数,可以拆分成两个行列式的和
【注】: det ( a + x b + y c d ) = det ( a

本文介绍了行列式的概念,包括它的四大基本性质,如交换行、加法和乘法的性质,以及行列式与矩阵逆的关系。阐述了计算行列式的方法,如通过Gauss消元法,并提到行列式的值与矩阵可逆性的关系。此外,还讨论了行列式的代数表达和Cramer法则在求解线性方程组中的应用。
最低0.47元/天 解锁文章
2734

被折叠的 条评论
为什么被折叠?



