对称矩阵和矩阵的SVD分解

本文详细介绍了对称矩阵的性质,包括它们的特征值总是实数,以及可以被正交对角化。接着,讨论了奇异值的概念,指出奇异值是与对称矩阵的对角化密切相关的,它对于理解矩阵的列空间和降维至关重要。最后,阐述了奇异值分解(SVD)的基本原理和应用,包括在机器学习、NLP和搜索引擎中的作用。
摘要由CSDN通过智能技术生成

完美的对称矩阵

A = A T A = A^T A=AT

⋆ \star 对称矩阵特征值一定是实数

⋆ \star 对称矩阵的多重特征值,对应的特征空间的维度一定等于重数 ⇔ \Leftrightarrow 几何重数 == 代数重数 ⇔ \Leftrightarrow 一定有n个线性无关的特征向量 ⇔ \Leftrightarrow 一定可相似对角化

正交对角化

对称矩阵可以被正交对角化(P可以是一个标准正交系)

⋆ \star 向量点乘(内积)与矩阵乘法之间的关系: v ⃗ 1 ⋅ v ⃗ 2 = ( v 1 ) T v 2 \vec{v}_1·\vec{v}_2 = (v_1)^T v_2 v 1v 2=(v1)Tv2(向量 = M 1 ∗ n M_{1*n} M1n

⋆ \star 对称矩阵,所有不同特征值:对应的特征向量相互垂直;相同特征值: k重特征值对应特征空间的维度为k

⇒ \Rightarrow 不同的 λ \lambda λ: 对应的特征向量相互正交,相同的 λ \lambda λ(k重):特征空间维度为k,所有在特征空间中也可以找到一组标准正交基

⇒ \Rightarrow 对称矩阵一定可以找到n个正交的特征向量(不仅仅是线性无关)

如果A是对称矩阵: A = Q D Q − 1 = Q D Q T A = QDQ^{-1} = QDQ^T A=QDQ1=QDQT(正交对角化)

Q: 正交矩阵(一个坐标系:只关注方向即可 → \rightarrow 将每个特征向量标准化, 形成标准正交矩阵,更方便)

【注】标准正交矩阵Q: Q T = Q − 1 Q^T = Q^{-1} QT=Q1

推论:如果一个矩阵可以被正交对角化,这个矩阵一定是对称矩阵 ,证明: A = ( Q D Q T ) T = A T A =(QDQ^T)^T = A^T A=QDQTT=AT

谱(某些领域中,将特征值或奇异值称为谱)定理:

A是对称矩阵 ⇔ \Leftrightarrow A可以被正交对角化 A = Q D Q T A = QDQ^T A=QDQT

奇异值

⋆ \star 对于每个非方阵:都可以找到一个对称矩阵与其对应

若A是一个 m ∗ n m*n mn 的矩阵, A T A A^TA ATA是一个 n ∗ n n*n nn 的对称矩阵

A T A A^TA ATA 有n个实数特征值( λ 1 , λ 2 . . . λ n \lambda_1, \lambda_2 ... \lambda_n λ1,λ2...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值