AI
fffffffff_jj
我是
展开
-
Matplotlib库学习
Matplotlib数据可视化绘制折线图 pyplotimport matplotlib as mplimport matplotlib.pyplot as pltimport numpy as npx = np.linspace(0, 10, 100)siny = np.sin(x)cosy = np.cos(x)#---绘图---plt.plot(x, siny, label="sin x")plt.plot(x, cosy, color="red", linestyle="--"原创 2020-06-26 15:52:42 · 287 阅读 · 0 评论 -
numpy库学习
numpy 数据基础array构造方法:可以用list创建常见属性:.dtype 查看元素类型其他创建array的方法:零:全0np.zeros(n)np.zeros(shape=n, dtype=int)np.zeros((x,y))一:全1np.ones(n)填充:np.full(shape, fill_value)arange创建array序列:np.arange(start, end, step=1)【注】step可以传入浮点数lin原创 2020-06-26 15:46:30 · 314 阅读 · 1 评论 -
机器学习第一课
机器学习基础数据集(data set ):比如,鸢尾花数据: 特征 - 种类 (全部数字化)样本(Sample):每一行数据除种类外,每一列表达样本的一个特征(feature):用矩阵 X描述第i个样本行写作 X(i)X^{(i)}X(i)( 也叫:特征向量) 第i个样本的第j个特征值 Xj(i)X^{(i)}_jXj(i)标记(label): 最后一列(种类),也是机器学习的目的(分类),用向量y表示【注】约定用大写字母表示矩阵,小写字母表示向量第i个样本的标记写作 y(i)y^{原创 2020-06-26 12:46:32 · 221 阅读 · 0 评论
分享