题目大意:
约瑟夫环变形,每次第 \(k\) 个出去后,他后面的第 \(k\) 个人站到他的位置,然后从这个位置继续;
现在你的编号,是 \(1\) 号,问从几号开始你回剩到最后。
分析:
直接模拟计算即可。
设从 \(x\) 位置开始则,最后剩下的人是 \(s\) \((\) 编号 \(0\) ~ \(n\) \(-\) \(1\) \()\)有,你的新编号为\(m\) \(-\) \(x\) \(+\) \(1\) \(=\) \(s\) ,则 \(x\) \(=\) \(m\) \(-\) \(s\) \(+\) \(1\) ,很水的题。
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int p[101];
int find(int s,int k,int n){
while(k)
if(p[s=(s+1)%n]!=-1)
k--;
return s;
}
int main(){
int n,k,m;
while(cin>>n>>k&&n){
m=n;
for(int i=0;i<m;i++)
p[i]=i;
int s=(k-1)%n;
for(int i=1;i<m;i++){
p[s]=-1;
swap(p[find(s,k,n)],p[s]);
s=find(s, k, n);
}
printf("%d\n",(m-p[s])%m+1);
}
}