数据结构与算法(31):普里姆算法(介绍,相关应用场景的实例修路问题代码实现)

应用场景-修路问题

看一个应用场景和问题:
(1)在这里插入图片描述

  1. 有胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通
  2. 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
  3. 问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?

思路分析: 将10条边,连接即可,但是总的里程数不是最小.
正确的思路,就是尽可能的选择少的路线,并且每条路线最小,保证总里程数最少.

进而引出一个概念

最小生成树

修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称MST。

  1. 给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树
  2. N个顶点,一定有N-1条边
  3. 包含全部顶点
  4. N-1条边都在图中
  5. 举例说明(如图:)
  6. 求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法

在这里插入图片描述

普里姆算法介绍

  1. 普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
  2. 普利姆的算法如下:
    2.1 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
    2.2 若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
    2.3 若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
    2.4 重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
    2.5 提示: 单独看步骤很难理解,我们通过代码来讲解,比较好理解.

普里姆算法的图解分析:

  1. 从A顶点开始处理 ==>
    A-C权值为7,A-G权值为2,A-B权值为5.

  2. 所以<A,G>开始,将A和B顶点和他们相邻的还没有访问的顶点进行处理
    A-C为7 ,A-B为5, G-B为3, G-E为4, G-F为6

  3. 从A-G-B开始寻找权值最小的边,和他们相邻的还没有访问的顶点进行处理.同上,选出了G-E.

最后得到集合为A,G,B,E,F,D,C 满足了最小生成树.
总公里数 2+3+4+5+4+7

在这里插入图片描述
代码实现:

package com.qiu.prim;

import org.omg.CORBA.INTERNAL;

import java.util.Arrays;

public class PrimAlgorithm {
    public static void main(String[] args) {
        //测试图是否创建成功
        char[] data = new char[]{'A','B','C','D','E','F','G'};
        int verxs = data.length;
        //邻接矩阵使用二维数组进行表示
        int [][]weight=new int[][]{
                //用10000表示两个较大的数来表示两个点不连通
         {10000,5,7,10000,10000,10000,2},
         {5,10000,10000,9,10000,10000,3},
         {7,10000,10000,10000,8,10000,10000},
         {10000,9,10000,10000,10000,4,10000},
         {10000,10000,8,10000,10000,5,4},
         {10000,10000,10000,4,5,10000,6},
         {2,3,10000,10000,4,6,10000},};

        MGraph mGraph = new MGraph(verxs);
        //创建一个MinTree对象
        MinTree minTree = new MinTree();
        minTree.createGraph(mGraph,verxs,data,weight);
        //输出
        minTree.showGraph(mGraph);

        //测试prim算法
        minTree.prim(mGraph,0);

    }

}
//创建最小生成树 -> 村庄的图
class MinTree{


    /**
     * //创建图的邻接矩阵
     * @param graph 图对象
     * @param verxs 图对应的顶点个数
     * @param data 图各个顶点的值
     * @param weight 图的邻接矩阵
     */
    public void createGraph(MGraph graph,int verxs,char[] data,int[][] weight){
        int i,j;
        for (i = 0; i < verxs; i++) {
            //顶点
            graph.data[i] = data[i];
            for (j = 0; j < verxs; j++) {
                graph.weight[i][j] = weight[i][j];
            }
        }
    }
    //显示图的邻接矩阵
    public void showGraph(MGraph graph){
        for (int[] link : graph.weight){
            System.out.println(Arrays.toString(link));
        }
    }


    /**
     * //编写一个prim算法,得到最小生成树
     * @param graph 图
     * @param v 从图的第几个顶点开始生成
     */
    public void prim(MGraph graph,int v){
        //表示顶点是否被访问过
        int[] visited = new int[graph.verxs];
        //visited 默认元素的值都是0
        for (int i = 0; i < graph.verxs; i++) {
            visited[i] = 0;
        }

        //把当前的这个节点标记为已经访问
        visited[v] = 1;
        //h1,h2记录两个顶点的下标
        int h1 = -1;
        int h2 = -1;
        //将minWeight 初始化成一个大树,后面遍历过程中会被替换
        int minWeight = 10000;
        //因为有graph.vertex顶点,prim算法结束后就会有grath.verxs-1条边
        for (int k = 1; k < graph.verxs; k++) {

            //确定每一次生成的子图,和哪个和这次遍历的节点的距离最近,i结点表示被访问过的结点
            for (int i = 0; i < graph.verxs; i++) {
                // j结点表示还没有访问过的结点
                for (int j = 0; j < graph.verxs; j++) {
                    if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight){
                        //替换minWeight(寻找已经访问过的节点和未访问过的节点间的权值最小的边)
                        minWeight = graph.weight[i][j];
                        //记下结点
                        h1 = i;
                        h2 = j;
                    }
                }
            }
            //找到了一条边是最小的
            System.out.println("边<" +graph.data[h1]+","+graph.data[h2]+"> 权值:"+minWeight);
            //将当前找到的节点标记为已经访问
            visited[h2] = 1;
            //midWeight重新设置成10000
            minWeight = 10000;
        }

    }


}

class MGraph{
    //表示图的节点个数
    int verxs;
    //存放结点数据
    char[] data;
    //存放边,就是我们的邻接矩阵
    int[][] weight;

    public MGraph(int verxs){
        this.verxs = verxs;
        data = new char[verxs];
        weight = new int[verxs][verxs];
    }
}

代码演示:
在这里插入图片描述

©️2020 CSDN 皮肤主题: 黑客帝国 设计师:上身试试 返回首页