大数据之Hadoop-HDFS

大数据 专栏收录该内容
29 篇文章 1 订阅

第1章 HDFS概述

1.1 HDFS产出背景及定义

1.1.1 HDFS产生背景

随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。

1.1.2 HDFS定义

HDFS(Hadoop Distributed File System),它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
HDFS的使用场景:适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。

1.2 HDFS优缺点

1.2.1 优点

1)高容错性
(1)数据自动保存多个副本。它通过增加副本的形式,提高容错性。
(2)某一个副本丢失以后,它可以自动恢复。
2)适合处理大数据
(1)数据规模:能够处理数据规模达到GB、TB、甚至PB级别的数据;
(2)文件规模:能够处理百万规模以上的文件数量,数量相当之大。
3)可构建在廉价机器上,通过多副本机制,提高可靠性。

1.2.2 缺点

1)不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。
2)无法高效的对大量小文件进行存储。
(1)存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息。这样是不可取的,因为NameNode的内存总是有限的;
(2)小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标。
3)不支持并发写入、文件随机修改。
(1)一个文件只能有一个写,不允许多个线程同时写;
(2)仅支持数据append(追加),不支持文件的随机修改。

1.3 HDFS组成架构

1.4 HDFS文件块大小

HDFS中的文件在物理上是分块存储(Block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在Hadoop2.x版本中是128M,老版本中是64M。

HDFS的块设置太小,会增加寻址时间,程序一直在找块的开始位置;
如果块设置的太大,从磁盘传输数据的时间会明显大于定位这个块开始位置所需的时间。导致程序在处理这块数据时,会非常慢。
HDFS块的大小设置主要取决于磁盘传输速率。

第2章 HDFS的Shell操作

2.1 基本语法

bin/hadoop fs 具体命令  OR  bin/hdfs dfs 具体命令

dfs是fs的实现类。

2.2 命令大全

[hadoop@hadoop101 hadoop-2.7.2]$ bin/hadoop fs
[-appendToFile <localsrc> ... <dst>]
        [-cat [-ignoreCrc] <src> ...]
        [-checksum <src> ...]
        [-chgrp [-R] GROUP PATH...]
        [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
        [-chown [-R] [OWNER][:[GROUP]] PATH...]
        [-copyFromLocal [-f] [-p] <localsrc> ... <dst>]
        [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
        [-count [-q] <path> ...]
        [-cp [-f] [-p] <src> ... <dst>]
        [-createSnapshot <snapshotDir> [<snapshotName>]]
        [-deleteSnapshot <snapshotDir> <snapshotName>]
        [-df [-h] [<path> ...]]
        [-du [-s] [-h] <path> ...]
        [-expunge]
        [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
        [-getfacl [-R] <path>]
        [-getmerge [-nl] <src> <localdst>]
        [-help [cmd ...]]
        [-ls [-d] [-h] [-R] [<path> ...]]
        [-mkdir [-p] <path> ...]
        [-moveFromLocal <localsrc> ... <dst>]
        [-moveToLocal <src> <localdst>]
        [-mv <src> ... <dst>]
        [-put [-f] [-p] <localsrc> ... <dst>]
        [-renameSnapshot <snapshotDir> <oldName> <newName>]
        [-rm [-f] [-r|-R] [-skipTrash] <src> ...]
        [-rmdir [--ignore-fail-on-non-empty] <dir> ...]
        [-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]
        [-setrep [-R] [-w] <rep> <path> ...]
        [-stat [format] <path> ...]
        [-tail [-f] <file>]
        [-test -[defsz] <path>]
        [-text [-ignoreCrc] <src> ...]
        [-touchz <path> ...]
        [-usage [cmd ...]]

2.3 常用命令实操

(0)启动Hadoop集群

[hadoop@hadoop101 hadoop-2.7.2]$ sbin/start-dfs.sh
[hadoop@hadoop102 hadoop-2.7.2]$ sbin/start-yarn.sh

(1)-help:输出这个命令参数

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -help rm

(2)-ls: 显示目录信息

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -ls /

(3)-mkdir:在HDFS上创建目录

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -mkdir -p /user/hadoop/test

(4)-moveFromLocal:从本地剪切粘贴到HDFS

[hadoop@hadoop101 hadoop-2.7.2]$ touch test.txt
[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs  -moveFromLocal  ./test.txt  /user/hadoop/test

(5)-appendToFile:追加一个文件到已经存在的文件末尾

[hadoop@hadoop101 hadoop-2.7.2]$ touch test1.txt
[hadoop@hadoop101 hadoop-2.7.2]$ vi test1.txt

输入

test file
hello world

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -appendToFile test1.txt /user/hadoop/test/test.txt

(6)-cat:显示文件内容

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -cat /user/hadoop/test/test.txt

(7)-chgrp 、-chmod、-chown:Linux文件系统中的用法一样,修改文件所属权限

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs  -chmod  666  /user/hadoop/test/test.txt
[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs  -chown  hadoop:hadoop  /user/hadoop/test/test.txt

(8)-copyFromLocal:从本地文件系统中拷贝文件到HDFS路径去

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -copyFromLocal README.txt /

(9)-copyToLocal:从HDFS拷贝到本地

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -copyToLocal /user/hadoop/test.txt ./

(10)-cp :从HDFS的一个路径拷贝到HDFS的另一个路径

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -cp /user/hadoop/test/test.txt /test3.txt

(11)-mv:在HDFS目录中移动文件

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -mv /test3.txt /user/hadoop/test

(12)-get:等同于copyToLocal,就是从HDFS下载文件到本地

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -get /user/hadoop/test/test.txt ./

(13)-getmerge:合并下载多个文件,比如HDFS的目录 /user/hadoop/test下有多个文件:log.1, log.2,log.3,...

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -getmerge /user/hadoop/test/* ./test4.txt

(14)-put:等同于copyFromLocal

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -put ./test4.txt /user/hadoop/test/

(15)-tail:显示一个文件的末尾

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -tail /user/hadoop/test/test.txt

(16)-rm:删除文件或文件夹

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -rm /user/hadoop/test/test3.txt

(17)-rmdir:删除空目录

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -mkdir /test
[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -rmdir /test

(18)-du统计文件夹的大小信息

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -du -s -h /user/hadoop/test
2.7 K  /user/hadoop/test

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -du  -h /user/hadoop/test
1.3 K  /user/hadoop/test/README.txt
15   /user/hadoop/test/test1.txt
1.4 K  /user/hadoop/test/test3.txt

(19)-setrep:设置HDFS中文件的副本数量

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -setrep 10 /user/hadoopkongming.txt 

这里设置的副本数只是记录在NameNode的元数据中,是否真的会有这么多副本,还得看DataNode的数量。因为目前只有3台设备,最多也就3个副本,只有节点数的增加到10台时,副本数才能达到10。

第3章 HDFS客户端操作

3.1 HDFS客户端环境准备

1 根据自己电脑的操作系统拷贝对应的编译后的hadoop jar包到非中文路径(例如:H:\hadoop-2.7.2)
2 配置HADOOP_HOME环境变量

3 配置Path环境变量

4 创建一个Maven工程hdfs

5 导入相应的依赖坐标+日志添加

<dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>RELEASE</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>2.8.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.7.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.7.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>2.7.2</version>
        </dependency>
</dependencies>

6 在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

7 创建包名:com.jackyan.hadoop.hdfs
8 创建HdfsClient类

public class HdfsClient{    
@Test
public void testMkdirs() throws IOException, InterruptedException, URISyntaxException{
        
        // 1 获取文件系统
        Configuration configuration = new Configuration();
        // 配置在集群上运行
        // configuration.set("fs.defaultFS", "hdfs://hadoop101:9000");
        // FileSystem fs = FileSystem.get(configuration);

        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "hadoop");
        
        // 2 创建目录
        fs.mkdirs(new Path("/1108/daxian/banzhang"));
        
        // 3 关闭资源
        fs.close();
    }
}

9 执行程序

3.2 HDFS的API操作

3.2.1 HDFS文件上传

1 在电脑上编写测试文件H:\hadoop-2.7.2\test.txt,内容如下:

hello hadoop
hello hdfs
hello world

2 编写源代码

  @Test
    public void testCopyFromLocalFile() throws IOException, InterruptedException, URISyntaxException {

        // 1 获取文件系统
        Configuration configuration = new Configuration();
        configuration.set("dfs.replication", "2");
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "hadoop");

        // 2 上传文件
        fs.copyFromLocalFile(new Path("H:\\hadoop-2.7.2\\test.txt"), new Path("/test.txt"));

        // 3 关闭资源
        fs.close();

        System.out.println("over");
    }

3 将hdfs-site.xml拷贝到项目的根目录下

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
</configuration>

4 参数优先级
参数优先级排序:(1)客户端代码中设置的值 >(2)ClassPath下的用户自定义配置文件 >(3)然后是服务器的默认配置

3.2.2 HDFS文件下载

    @Test
    public void testCopyToLocalFile() throws IOException, InterruptedException, URISyntaxException{

        // 1 获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "hadoop");

        // 2 执行下载操作
        // boolean delSrc 指是否将原文件删除
        // Path src 指要下载的文件路径
        // Path dst 指将文件下载到的路径
        // boolean useRawLocalFileSystem 是否开启文件校验
        fs.copyToLocalFile(false, new Path("/test.txt"), new Path("h:/test.txt"), true);

        // 3 关闭资源
        fs.close();
    }

3.2.3 HDFS文件夹删除

    @Test
    public void testDelete() throws IOException, InterruptedException, URISyntaxException{

        // 1 获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "hadoop");

        // 2 执行删除
        fs.delete(new Path("/user/"), true);

        // 3 关闭资源
        fs.close();
    }

3.2.4 HDFS文件名更改

    @Test
    public void testRename() throws IOException, InterruptedException, URISyntaxException{

        // 1 获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "hadoop");

        // 2 修改文件名称
        fs.rename(new Path("/test.txt"), new Path("/test1.txt"));

        // 3 关闭资源
        fs.close();
    }

3.2.5 HDFS文件详情查看

查看文件名称、权限、长度、块信息

    @Test
    public void testListFiles() throws IOException, InterruptedException, URISyntaxException{

        // 1获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "hadoop");

        // 2 获取文件详情
        RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);

        while(listFiles.hasNext()){
            LocatedFileStatus status = listFiles.next();

            // 输出详情
            // 文件名称
            System.out.println(status.getPath().getName());
            // 长度
            System.out.println(status.getLen());
            // 权限
            System.out.println(status.getPermission());
            // 分组
            System.out.println(status.getGroup());

            // 获取存储的块信息
            BlockLocation[] blockLocations = status.getBlockLocations();

            for (BlockLocation blockLocation : blockLocations) {

                // 获取块存储的主机节点
                String[] hosts = blockLocation.getHosts();

                for (String host : hosts) {
                    System.out.println(host);
                }
            }

            System.out.println("-----------分割线----------");
        }

        // 3 关闭资源
        fs.close();
    }

3.2.6 HDFS文件和文件夹判断

    @Test
    public void testListStatus() throws IOException, InterruptedException, URISyntaxException{

        // 1 获取文件配置信息
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "hadoop");

        // 2 判断是文件还是文件夹
        FileStatus[] listStatus = fs.listStatus(new Path("/"));

        for (FileStatus fileStatus : listStatus) {

            // 如果是文件
            if (fileStatus.isFile()) {
                System.out.println("f:"+fileStatus.getPath().getName());
            }else {
                System.out.println("d:"+fileStatus.getPath().getName());
            }
        }

        // 3 关闭资源
        fs.close();
    }

3.3 HDFS的I/O流操作

以上API操作HDFS系统都是框架封装好的,还可以采用IO流的方式实现数据的上传和下载。

3.3.1 HDFS文件上传

1.需求:把本地h盘上的test.txt文件上传到HDFS根目录
2.编写代码

@Test
public void putFileToHDFS() throws IOException, InterruptedException, URISyntaxException {

    // 1 获取文件系统
    Configuration configuration = new Configuration();
    FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "hadoop");

    // 2 创建输入流
    FileInputStream fis = new FileInputStream(new File("h:/test.txt"));

    // 3 获取输出流
    FSDataOutputStream fos = fs.create(new Path("/test.txt"));

    // 4 流对拷
    IOUtils.copyBytes(fis, fos, configuration);

    // 5 关闭资源
    IOUtils.closeStream(fos);
    IOUtils.closeStream(fis);
    fs.close();
}

3.3.2 HDFS文件下载

1.需求:从HDFS上下载test.txt文件到本地h盘上
2.编写代码

// 文件下载
@Test
public void getFileFromHDFS() throws IOException, InterruptedException, URISyntaxException{

    // 1 获取文件系统
    Configuration configuration = new Configuration();
    FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "hadoop");
        
    // 2 获取输入流
    FSDataInputStream fis = fs.open(new Path("/test.txt"));
        
    // 3 获取输出流
    FileOutputStream fos = new FileOutputStream(new File("h:/test1.txt"));
        
    // 4 流的对拷
    IOUtils.copyBytes(fis, fos, configuration);
        
    // 5 关闭资源
    IOUtils.closeStream(fos);
    IOUtils.closeStream(fis);
    fs.close();
}

3.3.3 定位文件读取

1.需求:分块读取HDFS上的大文件,比如根目录下的/hadoop-2.7.2.tar.gz
2.编写代码
(1)下载第一块

@Test
public void readFileSeek1() throws IOException, InterruptedException, URISyntaxException{

    // 1 获取文件系统
    Configuration configuration = new Configuration();
    FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "hadoop");
        
    // 2 获取输入流
    FSDataInputStream fis = fs.open(new Path("/hadoop-2.7.2.tar.gz"));
        
    // 3 创建输出流
    FileOutputStream fos = new FileOutputStream(new File("h:/hadoop-2.7.2.tar.gz.part1"));
        
    // 4 流的拷贝
    byte[] buf = new byte[1024];
        
    for(int i =0 ; i < 1024 * 128; i++){
        fis.read(buf);
        fos.write(buf);
    }
        
    // 5关闭资源
    IOUtils.closeStream(fis);
    IOUtils.closeStream(fos);
fs.close();
}

(2)下载第二块

@Test
public void readFileSeek2() throws IOException, InterruptedException, URISyntaxException{

    // 1 获取文件系统
    Configuration configuration = new Configuration();
    FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "hadoop");
        
    // 2 打开输入流
    FSDataInputStream fis = fs.open(new Path("/hadoop-2.7.2.tar.gz"));
        
    // 3 定位输入数据位置
    fis.seek(1024*1024*128);
        
    // 4 创建输出流
    FileOutputStream fos = new FileOutputStream(new File("e:/hadoop-2.7.2.tar.gz.part2"));
        
    // 5 流的对拷
    IOUtils.copyBytes(fis, fos, configuration);
        
    // 6 关闭资源
    IOUtils.closeStream(fis);
    IOUtils.closeStream(fos);
}

(3)合并文件
在Window命令窗口中进入到目录H:\,然后执行如下命令,对数据进行合并
type hadoop-2.7.2.tar.gz.part2 >> hadoop-2.7.2.tar.gz.part1
合并完成后,将hadoop-2.7.2.tar.gz.part1重新命名为hadoop-2.7.2.tar.gz。解压发现该tar包非常完整。

第4章 HDFS的数据流

4.1 HDFS写数据流程

1)客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。
2)NameNode返回是否可以上传。
3)客户端请求第一个 Block上传到哪几个DataNode服务器上。
4)NameNode返回3个DataNode节点,分别为dn1、dn2、dn3。
5)客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。
6)dn1、dn2、dn3逐级应答客户端。
7)客户端开始往dn1上传第一个Block(先从磁盘读取数据放到一个本地内存缓存),以Packet为单位,dn1收到一个Packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答。
8)当一个Block传输完成之后,客户端再次请求NameNode上传第二个Block的服务器。(重复执行3-7步)。

4.1.1 网络拓扑-节点距离计算

在HDFS写数据的过程中,NameNode会选择距离待上传数据最近距离的DataNode接收数据。那么这个最近距离怎么计算呢?
节点距离:两个节点到达最近的共同祖先的距离总和。
例如,假设有数据中心d1机架r1中的节点n1。该节点可以表示为/d1/r1/n1。利用这种标记,给出四种距离描述

4.1.2 机架感知(副本存储节点选择)

For the common case, when the replication factor is three, HDFS’s placement policy is to put one replica on one node in the local rack, another on a different node in the local rack, and the last on a different node in a different rack.

4.2 HDFS读数据流程

1)客户端通过Distributed FileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。
2)挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。
3)DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以Packet为单位来做校验)。
4)客户端以Packet为单位接收,先在本地缓存,然后写入目标文件。

第5章 NameNode和SecondaryNameNode

5.1 NN和2NN工作机制

思考:NameNode中的元数据是存储在哪里的?
首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的FsImage。

这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入Edits文件(只进行追加操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中。这样,一旦NameNode节点断电,可以通过FsImage和Edits的合并,合成元数据。

但是,如果长时间添加数据到Edits中,会导致该文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImage和Edits的合并,如果这个操作由NameNode节点完成,又会效率过低。因此,引入一个新的节点SecondaryNamenode,专门用于FsImage和Edits的合并。

NN和2NN工作机制如下:

1 第一阶段:NameNode启动
(1)第一次启动NameNode格式化后,创建Fsimage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。
(2)客户端对元数据进行增删改的请求。
(3)NameNode记录操作日志,更新滚动日志。
(4)NameNode在内存中对元数据进行增删改。
2 第二阶段:Secondary NameNode工作
(1)Secondary NameNode询问NameNode是否需要CheckPoint。直接带回NameNode是否检查结果。
(2)Secondary NameNode请求执行CheckPoint。
(3)NameNode滚动正在写的Edits日志。
(4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。
(5)Secondary NameNode加载编辑日志和镜像文件到内存,并合并。
(6)生成新的镜像文件fsimage.chkpoint。
(7)拷贝fsimage.chkpoint到NameNode。
(8)NameNode将fsimage.chkpoint重新命名成fsimage。

NN和2NN工作机制详解:

Fsimage:NameNode内存中元数据序列化后形成的文件。

Edits:记录客户端更新元数据信息的每一步操作(可通过Edits运算出元数据)。

NameNode启动时,先滚动Edits并生成一个空的edits.inprogress,然后加载Edits和Fsimage到内存中,此时NameNode内存就持有最新的元数据信息。Client开始对NameNode发送元数据的增删改的请求,这些请求的操作首先会被记录到edits.inprogress中(查询元数据的操作不会被记录在Edits中,因为查询操作不会更改元数据信息),如果此时NameNode挂掉,重启后会从Edits中读取元数据的信息。然后,NameNode会在内存中执行元数据的增删改的操作。

由于Edits中记录的操作会越来越多,Edits文件会越来越大,导致NameNode在启动加载Edits时会很慢,所以需要对Edits和Fsimage进行合并(所谓合并,就是将Edits和Fsimage加载到内存中,照着Edits中的操作一步步执行,最终形成新的Fsimage)。SecondaryNameNode的作用就是帮助NameNode进行Edits和Fsimage的合并工作。

SecondaryNameNode首先会询问NameNode是否需要CheckPoint(触发CheckPoint需要满足两个条件中的任意一个,定时时间到和Edits中数据写满了)。直接带回NameNode是否检查结果。SecondaryNameNode执行CheckPoint操作,首先会让NameNode滚动Edits并生成一个空的edits.inprogress,滚动Edits的目的是给Edits打个标记,以后所有新的操作都写入edits.inprogress,其他未合并的Edits和Fsimage会拷贝到SecondaryNameNode的本地,然后将拷贝的Edits和Fsimage加载到内存中进行合并,生成fsimage.chkpoint,然后将fsimage.chkpoint拷贝给NameNode,重命名为Fsimage后替换掉原来的Fsimage。NameNode在启动时就只需要加载之前未合并的Edits和Fsimage即可,因为合并过的Edits中的元数据信息已经被记录在Fsimage中。

5.2 Fsimage和Edits解析

1 概念

NameNode被格式化之后,将在/opt/modules/hadoop-2.7.2/datas/tmp/dfs/name/current目录中产生如下文件

fsimage_0000000000000000000
fsimage_0000000000000000000.md5
seen_txid
VERSION

(1)Fsimage文件:HDFS文件系统元数据的一个永久性的检查点,其中包含HDFS文件系统的所有目录和文件inode的序列化信息。
(2)Edits文件:存放HDFS文件系统的所有更新操作的路径,文件系统客户端执行的所有写操作首先会被记录到Edits文件中。
(3)seen_txid文件保存的是一个数字,就是最后一个edits_的数字
(4)每次NameNode启动的时候都会将Fsimage文件读入内存,加载Edits里面的更新操作,保证内存中的元数据信息是最新的、同步的,可以看成NameNode启动的时候就将Fsimage和Edits文件进行了合并。

2 oiv查看Fsimage文件

(1)查看oiv和oev命令

[hadoop@hadoop101 current]$ hdfs
oiv      apply the offline fsimage viewer to an fsimage
oev      apply the offline edits viewer to an edits file

(2)基本语法

hdfs oiv -p 文件类型 -i镜像文件 -o 转换后文件输出路径

(3)案例实操

[hadoop@hadoop101 current]$ pwd
/opt/modules/hadoop-2.7.2/data/tmp/dfs/name/current 

[hadoop@hadoop101 current]$ hdfs oiv -p XML -i fsimage_0000000000000000025 -o /opt/modules/hadoop-2.7.2/fsimage.xml
[hadoop@hadoop101 current]$ cat /opt/modules/hadoop-2.7.2/fsimage.xml

将显示的xml文件内容拷贝到Eclipse中创建的xml文件中,并格式化。部分显示结果如下。

<inode>
    <id>16386</id>
    <type>DIRECTORY</type>
    <name>user</name>
    <mtime>1512722284477</mtime>
    <permission>hadoop:supergroup:rwxr-xr-x</permission>
    <nsquota>-1</nsquota>
    <dsquota>-1</dsquota>
</inode>
<inode>
    <id>16387</id>
    <type>DIRECTORY</type>
    <name>hadoop</name>
    <mtime>1512790549080</mtime>
    <permission>hadoop:supergroup:rwxr-xr-x</permission>
    <nsquota>-1</nsquota>
    <dsquota>-1</dsquota>
</inode>
<inode>
    <id>16389</id>
    <type>FILE</type>
    <name>wc.input</name>
    <replication>3</replication>
    <mtime>1512722322219</mtime>
    <atime>1512722321610</atime>
    <perferredBlockSize>134217728</perferredBlockSize>
    <permission>hadoop:supergroup:rw-r--r--</permission>
    <blocks>
        <block>
            <id>1073741825</id>
            <genstamp>1001</genstamp>
            <numBytes>59</numBytes>
        </block>
    </blocks>
</inode >

在集群启动后,要求DataNode上报数据块信息,并间隔一段时间后再次上报

3 oev查看Edits文件

(1)基本语法

hdfs oev -p 文件类型 -i编辑日志 -o 转换后文件输出路径

(2)案例实操

[hadoop@hadoop101 current]$ hdfs oev -p XML -i edits_0000000000000000012-0000000000000000013 -o /opt/modules/hadoop-2.7.2/edits.xml
[hadoop@hadoop101 current]$ cat /opt/modules/hadoop-2.7.2/edits.xml

将显示的xml文件内容拷贝到Eclipse中创建的xml文件中,并格式化。显示结果如下。

<?xml version="1.0" encoding="UTF-8"?>
<EDITS>
    <EDITS_VERSION>-63</EDITS_VERSION>
    <RECORD>
        <OPCODE>OP_START_LOG_SEGMENT</OPCODE>
        <DATA>
            <TXID>129</TXID>
        </DATA>
    </RECORD>
    <RECORD>
        <OPCODE>OP_ADD</OPCODE>
        <DATA>
            <TXID>130</TXID>
            <LENGTH>0</LENGTH>
            <INODEID>16407</INODEID>
            <PATH>/hello7.txt</PATH>
            <REPLICATION>2</REPLICATION>
            <MTIME>1512943607866</MTIME>
            <ATIME>1512943607866</ATIME>
            <BLOCKSIZE>134217728</BLOCKSIZE>
            <CLIENT_NAME>DFSClient_NONMAPREDUCE_-1544295051_1</CLIENT_NAME>
            <CLIENT_MACHINE>192.168.56.103</CLIENT_MACHINE>
            <OVERWRITE>true</OVERWRITE>
            <PERMISSION_STATUS>
                <USERNAME>hadoop</USERNAME>
                <GROUPNAME>supergroup</GROUPNAME>
                <MODE>420</MODE>
            </PERMISSION_STATUS>
            <RPC_CLIENTID>908eafd4-9aec-4288-96f1-e8011d181561</RPC_CLIENTID>
            <RPC_CALLID>0</RPC_CALLID>
        </DATA>
    </RECORD>
    <RECORD>
        <OPCODE>OP_ALLOCATE_BLOCK_ID</OPCODE>
        <DATA>
            <TXID>131</TXID>
            <BLOCK_ID>1073741839</BLOCK_ID>
        </DATA>
    </RECORD>
    <RECORD>
        <OPCODE>OP_SET_GENSTAMP_V2</OPCODE>
        <DATA>
            <TXID>132</TXID>
            <GENSTAMPV2>1016</GENSTAMPV2>
        </DATA>
    </RECORD>
    <RECORD>
        <OPCODE>OP_ADD_BLOCK</OPCODE>
        <DATA>
            <TXID>133</TXID>
            <PATH>/hello7.txt</PATH>
            <BLOCK>
                <BLOCK_ID>1073741839</BLOCK_ID>
                <NUM_BYTES>0</NUM_BYTES>
                <GENSTAMP>1016</GENSTAMP>
            </BLOCK>
            <RPC_CLIENTID></RPC_CLIENTID>
            <RPC_CALLID>-2</RPC_CALLID>
        </DATA>
    </RECORD>
    <RECORD>
        <OPCODE>OP_CLOSE</OPCODE>
        <DATA>
            <TXID>134</TXID>
            <LENGTH>0</LENGTH>
            <INODEID>0</INODEID>
            <PATH>/hello7.txt</PATH>
            <REPLICATION>2</REPLICATION>
            <MTIME>1512943608761</MTIME>
            <ATIME>1512943607866</ATIME>
            <BLOCKSIZE>134217728</BLOCKSIZE>
            <CLIENT_NAME></CLIENT_NAME>
            <CLIENT_MACHINE></CLIENT_MACHINE>
            <OVERWRITE>false</OVERWRITE>
            <BLOCK>
                <BLOCK_ID>1073741839</BLOCK_ID>
                <NUM_BYTES>25</NUM_BYTES>
                <GENSTAMP>1016</GENSTAMP>
            </BLOCK>
            <PERMISSION_STATUS>
                <USERNAME>hadoop</USERNAME>
                <GROUPNAME>supergroup</GROUPNAME>
                <MODE>420</MODE>
            </PERMISSION_STATUS>
        </DATA>
    </RECORD>
</EDITS >

5.3 CheckPoint时间设置

(1)通常情况下,SecondaryNameNode每隔一小时执行一次。

[hdfs-default.xml]

<property>
  <name>dfs.namenode.checkpoint.period</name>
  <value>3600</value>
</property>

(2)一分钟检查一次操作次数,当操作次数达到1百万时,SecondaryNameNode执行一次。

<property>
  <name>dfs.namenode.checkpoint.txns</name>
  <value>1000000</value>
<description>操作动作次数</description>
</property>

<property>
  <name>dfs.namenode.checkpoint.check.period</name>
  <value>60</value>
<description> 1分钟检查一次操作次数</description>
</property >

5.4 NameNode故障处理

NameNode故障后,可以采用如下两种方法恢复数据。

方法一:将SecondaryNameNode中数据拷贝到NameNode存储数据的目录;

1 kill -9 NameNode进程

2 删除NameNode存储的数据(/opt/modules/hadoop-2.7.2/data/tmp/dfs/name)

[hadoop@hadoop101 hadoop-2.7.2]$ rm -rf /opt/modules/hadoop-2.7.2/data/tmp/dfs/name/*

3 拷贝SecondaryNameNode中数据到原NameNode存储数据目录

[hadoop@hadoop101 dfs]$ scp -r hadoop@hadoop103:/opt/modules/hadoop-2.7.2/data/tmp/dfs/namesecondary/* ./name/

4 重新启动NameNode

[hadoop@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start namenode

方法二:使用-importCheckpoint选项启动NameNode守护进程,从而将SecondaryNameNode中数据拷贝到NameNode目录中。

1 修改hdfs-site.xml中的

<property>
  <name>dfs.namenode.checkpoint.period</name>
  <value>120</value>
</property>

<property>
  <name>dfs.namenode.name.dir</name>
  <value>/opt/modules/hadoop-2.7.2/data/tmp/dfs/name</value>
</property>

2 kill -9 NameNode进程

3 删除NameNode存储的数据(/opt/modules/hadoop-2.7.2/data/tmp/dfs/name)

[hadoop@hadoop101 hadoop-2.7.2]$ rm -rf /opt/modules/hadoop-2.7.2/data/tmp/dfs/name/*

4 如果SecondaryNameNode不和NameNode在一个主机节点上,需要将SecondaryNameNode存储数据的目录拷贝到NameNode存储数据的平级目录,并删除in_use.lock文件

[hadoop@hadoop101 dfs]$ scp -r hadoop@hadoop103:/opt/modules/hadoop-2.7.2/data/tmp/dfs/namesecondary ./

[hadoop@hadoop101 namesecondary]$ rm -rf in_use.lock

[hadoop@hadoop101 dfs]$ pwd
/opt/modules/hadoop-2.7.2/data/tmp/dfs

[hadoop@hadoop101 dfs]$ ls
data  name  namesecondary

5 导入检查点数据(等待一会ctrl+c结束掉)

[hadoop@hadoop101 hadoop-2.7.2]$ bin/hdfs namenode -importCheckpoint

6 启动NameNode

[hadoop@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start namenode

5.5 集群安全模式

1 概述

(1)NameNode启动

NameNode启动时,首先将镜像文件(Fsimage)载入内存,并执行编辑日志(Edits)中的各项操作。一旦在内存中成功建立文件系统元数据的映像,则创建一个新的Fsimage文件和一个空的编辑日志。此时,NameNode开始监听DataNode请求。这个过程期间,NameNode一直运行在安全模式,即NameNode的文件系统对于客户端来说是只读的。

(2)DataNode启动

系统中的数据块的位置并不是由NameNode维护的,而是以块列表的形式存储在DataNode中。在系统的正常操作期间,NameNode会在内存中保留所有块位置的映射信息。在安全模式下,各个DataNode会向NameNode发送最新的块列表信息,NameNode了解到足够多的块位置信息之后,即可高效运行文件系统。

(3)安全模式退出判断

如果满足“最小副本条件”,NameNode会在30秒钟之后就退出安全模式。所谓的最小副本条件指的是在整个文件系统中99.9%的块满足最小副本级别(默认值:dfs.replication.min=1)。在启动一个刚刚格式化的HDFS集群时,因为系统中还没有任何块,所以NameNode不会进入安全模式。

2 基本语法

集群处于安全模式,不能执行重要操作(写操作)。集群启动完成后,自动退出安全模式。

(1)bin/hdfs dfsadmin -safemode get      (功能描述:查看安全模式状态)
(2)bin/hdfs dfsadmin -safemode enter  (功能描述:进入安全模式状态)
(3)bin/hdfs dfsadmin -safemode leave    (功能描述:离开安全模式状态)
(4)bin/hdfs dfsadmin -safemode wait (功能描述:等待安全模式状态)

3 测试

(1)查看当前模式

[hadoop@hadoop101 ~]$ hdfs dfsadmin -safemode get
Safe mode is OFF

(2)先进入安全模式

[hadoop@hadoop101 ~]$ hdfs dfsadmin -safemode enter
Safe mode is ON

(3)执行创建目录的命令

[hadoop@hadoop101 ~]$ hdfs dfs -mkdir /test1
mkdir: Cannot create directory /test1. Name node is in safe mode.

(4)关闭安全模式

[hadoop@hadoop101 ~]$ hdfs dfsadmin -safemode leave
Safe mode is OFF

第6章 DataNode

6.1 DataNode工作机制

1)一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。
2)DataNode启动后向NameNode注册,通过后,周期性(1小时)的向NameNode上报所有的块信息。
3)心跳是每3秒一次,心跳返回结果带有NameNode给该DataNode的命令如复制块数据到另一台机器,或删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用。
4)集群运行中可以安全加入和退出一些机器。

6.2 数据完整性

思考:如果电脑磁盘里面存储的数据是控制高铁信号灯的红灯信号(1)和绿灯信号(0),但是存储该数据的磁盘坏了,一直显示是绿灯,是否很危险?同理DataNode节点上的数据损坏了,却没有发现,是否也很危险,那么如何解决呢?

如下是DataNode节点保证数据完整性的方法。
1)当DataNode读取Block的时候,它会计算CheckSum。
2)如果计算后的CheckSum,与Block创建时值不一样,说明Block已经损坏。
3)Client读取其他DataNode上的Block。
4)DataNode在其文件创建后周期验证CheckSum。

6.3 掉线时限参数设置

1、DataNode进程死亡或者网络故障造成DataNode无法与NameNode通信
2、NameNode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。
3、HDFS默认的超时时长为10分钟+30秒。
4、如果定义超时时间为TimeOut,则超时时长的计算公式为:
TimeOut = 2 * dfs.namenode.heartbeat.recheck-interval + 10 * dfs.heartbeat.interval。
而默认的dfs.namenode.heartbeat.recheck-interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。

需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。

<property>
    <name>dfs.namenode.heartbeat.recheck-interval</name>
    <value>300000</value>
</property>
<property>
    <name>dfs.heartbeat.interval</name>
    <value>3</value>
</property>

6.4 服役新数据节点

随着公司业务的增长,数据量越来越大,原有的数据节点的容量已经不能满足存储数据的需求,需要在原有集群基础上动态添加新的数据节点。

1 环境准备

(1)准备一台hadoop104主机
(2)配置JAVA环境(安装jdk及配置环境变量)
(3)将hadoop101上的/opt/modules/hadoop-2.7.2拷贝到hadoop104上
(4)删除原来HDFS文件系统留存的文件(/opt/modules/hadoop-2.7.2/datas和logs)

rm -rf /opt/modules/hadoop-2.7.2/datas/*
rm -rf /opt/modules/hadoop-2.7.2/logs/*

2 服役新节点具体步骤

(1)直接启动DataNode,即可关联到集群

[hadoop@hadoop104 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start datanode
[hadoop@hadoop104 hadoop-2.7.2]$ sbin/yarn-daemon.sh start nodemanager

(2)在hadoop104上上传文件

[hadoop@hadoop hadoop-2.7.2]$ hdfs dfs -put LICENSE.txt /

(3)如果数据不均衡,可以用命令实现集群的再平衡

[hadoop@hadoop sbin]$ start-balancer.sh
starting balancer, logging to /opt/modules/hadoop-2.7.2/logs/hadoop-hadoop-balancer-hadoop.out
Time Stamp               Iteration#  Bytes Already Moved  Bytes Left To Move  Bytes Being Moved

6.5 退役旧数据节点

6.5.1 添加白名单

添加到白名单的主机节点,都允许访问NameNode,不在白名单的主机节点,都会被退出。

配置白名单的具体步骤如下:

(1)在NameNode的/opt/modules/hadoop-2.7.2/etc/hadoop目录下创建dfs.hosts文件

[hadoop@hadoop101 hadoop]$ pwd
/opt/modules/hadoop-2.7.2/etc/hadoop
[hadoop@hadoop101 hadoop]$ touch dfs.hosts
[hadoop@hadoop101 hadoop]$ vi dfs.hosts

添加如下主机名称(不添加hadoop104)

hadoop101
hadoop102
hadoop103

(2)在NameNode的hdfs-site.xml配置文件中增加dfs.hosts属性

<property>
    <name>dfs.hosts</name>
    <value>/opt/modules/hadoop-2.7.2/etc/hadoop/dfs.hosts</value>
</property>

(3)配置文件分发

[hadoop@hadoop101 hadoop]$ xsync hdfs-site.xml

(4)刷新NameNode

[hadoop@hadoop101 hadoop-2.7.2]$ hdfs dfsadmin -refreshNodes
Refresh nodes successful

(5)更新ResourceManager节点

[hadoop@hadoop101 hadoop-2.7.2]$ yarn rmadmin -refreshNodes

6.5.2 黑名单退役

在黑名单上面的主机都会被强制退出。

1 在NameNode的/opt/modules/hadoop-2.7.2/etc/hadoop目录下创建dfs.hosts.exclude文件

[hadoop@hadoop101 hadoop]$ pwd
/opt/modules/hadoop-2.7.2/etc/hadoop
[hadoop@hadoop101 hadoop]$ touch dfs.hosts.exclude
[hadoop@hadoop101 hadoop]$ vi dfs.hosts.exclude

添加如下主机名称(要退役的节点)

hadoop104

2 在NameNode的hdfs-site.xml配置文件中增加dfs.hosts.exclude属性

<property>
    <name>dfs.hosts.exclude</name>
    <value>/opt/modules/hadoop-2.7.2/etc/hadoop/dfs.hosts.exclude</value>
</property>

3 刷新NameNode、刷新ResourceManager

[hadoop@hadoop101 hadoop-2.7.2]$ hdfs dfsadmin -refreshNodes
[hadoop@hadoop101 hadoop-2.7.2]$ yarn rmadmin -refreshNodes

4 检查Web浏览器,退役节点的状态为decommission in progress(退役中),说明数据节点正在复制块到其他节点
5 等待退役节点状态为decommissioned(所有块已经复制完成),停止该节点及节点资源管理器。

注意:如果副本数是3,服役的节点小于等于3,是不能退役成功的,需要修改副本数后才能退役

[hadoop@hadoop104 hadoop-2.7.2]$ sbin/hadoop-daemon.sh stop datanode
[hadoop@hadoop104 hadoop-2.7.2]$ sbin/yarn-daemon.sh stop nodemanager

6 如果数据不均衡,可以用命令实现集群的再平衡

[hadoop@hadoop101 hadoop-2.7.2]$ sbin/start-balancer.sh 
starting balancer, logging to /opt/modules/hadoop-2.7.2/logs/hadoop-hadoop-balancer-hadoop101.out
Time Stamp               Iteration#  Bytes Already Moved  Bytes Left To Move  Bytes Being Moved

注意:不允许白名单和黑名单中同时出现同一个主机名称。

6.6 Datanode多目录配置

1 DataNode也可以配置成多个目录,每个目录存储的数据不一样。即:数据不是副本
2 具体配置如下

hdfs-site.xml

<property>
    <name>dfs.datanode.data.dir</name>
    <value>file:///${hadoop.tmp.dir}/dfs/data1,file:///${hadoop.tmp.dir}/dfs/data2</value>
</property>

第7章 HDFS 2.X新特性

7.1 集群间数据拷贝

1 scp实现两个远程主机之间的文件复制

scp -r hello.txt root@hadoop101:/user/hadoop/hello.txt      // 推 push
scp -r root@hadoop101:/user/hadoop/hello.txt  hello.txt     // 拉 pull
//是通过本地主机中转实现两个远程主机的文件复制;如果在两个远程主机之间ssh没有配置的情况下可以使用该方式。
scp -r root@hadoop101:/user/hadoop/hello.txt root@hadoop102:/user/hadoop   

2 采用distcp命令实现两个Hadoop集群之间的递归数据复制

[hadoop@hadoop101 hadoop-2.7.2]$  bin/hadoop distcp
hdfs://haoop102:9000/user/hadoop/hello.txt hdfs://hadoop102:9000/user/hadoop/hello.txt

7.2 小文件存档

1 HDFS存储小文件弊端

每个文件均按块存储,每个块的元数据存储在NameNode的内存中,因此HDFS存储小文件会非常低效。因为大量的小文件会耗尽NameNode中的大部分内存。但注意,存储小文件所需要的磁盘容量和数据块的大小无关。例如,一个1MB的文件设置为128MB的块存储,实际使用的是1MB的磁盘空间,而不是128MB。

2 解决存储小文件办法之一

HDFS存档文件或HAR文件,是一个更高效的文件存档工具,它将文件存入HDFS块,在减少NameNode内存使用的同时,允许对文件进行透明的访问。具体说来,HDFS存档文件对内还是一个一个独立文件,对NameNode而言却是一个整体,减少了NameNode的内存。

3.案例实操

(1)需要启动YARN进程

[hadoop@hadoop101 hadoop-2.7.2]$ start-yarn.sh

(2)归档文件

把/user/hadoop/input目录里面的所有文件归档成一个叫input.har的归档文件,并把归档后文件存储到/user/hadoop/output路径下。

[hadoop@hadoop101 hadoop-2.7.2]$ bin/hadoop archive -archiveName input.har –p /user/hadoop/input  /user/hadoop/output

(3)查看归档

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -lsr /user/hadoop/output/input.har
[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -lsr har:///user/hadoop/output/input.har

(4)解归档文件

[hadoop@hadoop101 hadoop-2.7.2]$ hadoop fs -cp har:/// user/hadoop/output/input.har/*  /user/hadoop

第8章 HDFS HA高可用

8.1 HA概述

1)所谓HA(High Available),即高可用(7*24小时不中断服务)。
2)实现高可用最关键的策略是消除单点故障。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。
3)Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF)。
4)NameNode主要在以下两个方面影响HDFS集群
NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启
NameNode机器需要升级,包括软件、硬件升级,此时集群也将无法使用

HDFS HA功能通过配置Active/Standby两个NameNodes实现在集群中对NameNode的热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将NameNode很快的切换到另外一台机器。

8.2 HDFS-HA工作机制

通过双NameNode消除单点故障

8.2.1 HDFS-HA工作要点

1 元数据管理方式需要改变

  • 内存中各自保存一份元数据;
  • Edits日志只有Active状态的NameNode节点可以做写操作;
  • 两个NameNode都可以读取Edits;
  • 共享的Edits放在一个共享存储中管理(qjournal和NFS两个主流实现);

2 需要一个状态管理功能模块

实现了一个zkfailover,常驻在每一个namenode所在的节点,每一个zkfailover负责监控自己所在NameNode节点,利用zk进行状态标识,当需要进行状态切换时,由zkfailover来负责切换,切换时需要防止brain split现象的发生。

3 必须保证两个NameNode之间能够ssh无密码登录

4 隔离(Fence),即同一时刻仅仅有一个NameNode对外提供服务

8.2.2 HDFS-HA自动故障转移工作机制

手动故障转移:
使用命令hdfs haadmin -failover手动进行故障转移,在该模式下,即使现役NameNode已经失效,系统也不会自动从现役NameNode转移到待机NameNode。

自动故障转移:
自动故障转移为HDFS部署增加了两个新组件:ZooKeeper和ZKFailoverController(ZKFC)进程,ZooKeeper是维护少量协调数据,通知客户端这些数据的改变和监视客户端故障的高可用服务。

HA的自动故障转移依赖于ZooKeeper的以下功能:

1)故障检测:集群中的每个NameNode在ZooKeeper中维护了一个持久会话,如果机器崩溃,ZooKeeper中的会话将终止,ZooKeeper通知另一个NameNode需要触发故障转移。

2)现役NameNode选择:ZooKeeper提供了一个简单的机制用于唯一的选择一个节点为active状态。如果目前现役NameNode崩溃,另一个节点可能从ZooKeeper获得特殊的排外锁以表明它应该成为现役NameNode。

ZKFC是自动故障转移中的另一个新组件,是ZooKeeper的客户端,也监视和管理NameNode的状态。每个运行NameNode的主机也运行了一个ZKFC进程,ZKFC负责:

1)健康监测:ZKFC使用一个健康检查命令定期地ping与之在相同主机的NameNode,只要该NameNode及时地回复健康状态,ZKFC认为该节点是健康的。如果该节点崩溃,冻结或进入不健康状态,健康监测器标识该节点为非健康的。

2)ZooKeeper会话管理:当本地NameNode是健康的,ZKFC保持一个在ZooKeeper中打开的会话。如果本地NameNode处于active状态,ZKFC也保持一个特殊的znode锁,该锁使用了ZooKeeper对短暂节点的支持,如果会话终止,锁节点将自动删除。

3)基于ZooKeeper的选择:如果本地NameNode是健康的,且ZKFC发现没有其它的节点当前持有znode锁,它将为自己获取该锁。如果成功,则它已经赢得了选择,并负责运行故障转移进程以使它的本地NameNode为Active。故障转移进程与前面描述的手动故障转移相似,首先如果必要保护之前的现役NameNode,然后本地NameNode转换为Active状态。

8.3 HDFS-HA集群配置

8.3.1 集群规划

hadoop101hadoop102hadoop103
NameNodeNameNode
JournalNodeJournalNodeJournalNode
DataNodeDataNodeDataNode
ZKZKZK
ResourceManager
NodeManagerNodeManagerNodeManager

8.3.2 配置Zookeeper集群

集群规划

在hadoop101、hadoop102和hadoop103三个节点上部署Zookeeper。

解压安装

(1)解压Zookeeper安装包到/opt/modules/目录下

[hadoop@hadoop101 softwares]$ tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/modules/

(2)在/opt/modules/zookeeper-3.4.10/这个目录下创建zkData

mkdir -p zkData

(3)重命名/opt/modules/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfg为zoo.cfg

mv zoo_sample.cfg zoo.cfg

配置zoo.cfg文件

(1)具体配置

dataDir=/opt/modules/zookeeper-3.4.10/zkData

增加如下配置

#######################cluster##########################
server.1=hadoop101:2888:3888
server.2=hadoop102:2888:3888
server.3=hadoop103:2888:3888

(2)配置参数解读

Server.A=B:C:D。
A是一个数字,表示这个是第几号服务器;
B是这个服务器的IP地址;
C是这个服务器与集群中的Leader服务器交换信息的端口;
D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。

配置log4j.properties,并创建logs目录

zookeeper.log.dir=/opt/modules/zookeeper-3.4.10/logs
zookeeper.tracelog.dir=/opt/modules/zookeeper-3.4.10/logs

[hadoop@hadoop101 zookeeper-3.4.10]$ mkdir logs

集群操作

(1)在/opt/modules/zookeeper-3.4.10/zkData目录下创建一个myid的文件

touch myid

(2)编辑myid文件

[hadoop@hadoop101 zkData]$ vim myid
1

(3)同步zookeeper到其他机器

[hadoop@hadoop101 modules]$ xsync zookeeper-3.4.10/

并分别修改myid文件中内容为2、3

(4)分别启动zookeeper

[root@hadoop101 zookeeper-3.4.10]# bin/zkServer.sh start
[root@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh start
[root@hadoop103 zookeeper-3.4.10]# bin/zkServer.sh start

(5)查看状态

[root@hadoop101 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/modules/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
[root@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/modules/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: leader
[root@hadoop103 zookeeper-3.4.5]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/modules/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower

8.3.3 配置HDFS-HA集群

官方地址:http://hadoop.apache.org/

在/opt/目录下创建一个hadoop-ha文件夹

[hadoop@hadoop101 opt]$ mkdir hadoop-ha

将/opt/sofewares下的 hadoop-2.7.2.tar.gz拷贝到/opt/hadoop-ha目录下

[hadoop@hadoop101 softwares]$ tar -xf hahadoop-2.7.2.tar.gz -C /opt/hadoop-ha/

分发到hadoop102, hadoop103

[hadoop@hadoop101 opt]$ xsync hadoop-ha/

配置hadoop-env.sh

export JAVA_HOME=/opt/modules/jdk1.8.0_144

配置core-site.xml

<configuration>
        <!-- 把两个NameNode地址组装成一个集群mycluster -->
        <property>
                <name>fs.defaultFS</name>
                <value>hdfs://mycluster</value>
        </property>

        <!-- 指定hadoop运行时产生文件的存储目录 -->
        <property>
                <name>hadoop.tmp.dir</name>
                <value>/opt/hadoop-ha/hadoop-2.7.2/datas/tmp</value>
        </property>
</configuration>

配置hdfs-site.xml

<configuration>
    <!-- 完全分布式集群名称 -->
    <property>
        <name>dfs.nameservices</name>
        <value>mycluster</value>
    </property>

    <!-- 集群中NameNode节点都有哪些 -->
    <property>
        <name>dfs.ha.namenodes.mycluster</name>
        <value>nn1,nn2</value>
    </property>

    <!-- nn1的RPC通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn1</name>
        <value>hadoop101:9000</value>
    </property>

    <!-- nn2的RPC通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn2</name>
        <value>hadoop102:9000</value>
    </property>

    <!-- nn1的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.mycluster.nn1</name>
        <value>hadoop101:50070</value>
    </property>

    <!-- nn2的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.mycluster.nn2</name>
        <value>hadoop102:50070</value>
    </property>

    <!-- 指定NameNode元数据在JournalNode上的存放位置 -->
    <property>
        <name>dfs.namenode.shared.edits.dir</name>
        <value>qjournal://hadoop101:8485;hadoop102:8485;hadoop103:8485/mycluster</value>
    </property>

    <!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
    <property>
        <name>dfs.ha.fencing.methods</name>
        <value>sshfence</value>
    </property>

    <!-- 使用隔离机制时需要ssh无秘钥登录-->
    <property>
        <name>dfs.ha.fencing.ssh.private-key-files</name>
        <value>/home/hadoop/.ssh/id_rsa</value>
    </property>

    <!-- 声明journalnode服务器存储目录-->
    <property>
        <name>dfs.journalnode.edits.dir</name>
        <value>/opt/hadoop-ha/hadoop-2.7.2/datas/jn</value>
    </property>

    <!-- 关闭权限检查-->
    <property>
        <name>dfs.permissions.enable</name>
        <value>false</value>
    </property>

    <!-- 访问代理类:client,mycluster,active配置失败自动切换实现方式-->
    <property>
        <name>dfs.client.failover.proxy.provider.mycluster</name>
        <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
</configuration>

配置slaves

hadoop101
hadoop102
hadoop103

拷贝配置好的hadoop环境到其他节点

8.3.4 启动HDFS-HA集群

在各个JournalNode节点上,输入以下命令启动journalnode服务

sbin/hadoop-daemon.sh start journalnode

在[nn1]上,对其进行格式化,并启动

bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode

在[nn2]上,同步nn1的元数据信息

bin/hdfs namenode -bootstrapStandby

启动[nn2]

sbin/hadoop-daemon.sh start namenode

在[nn1]上,启动所有datanode

sbin/hadoop-daemons.sh start datanode

将[nn1]切换为Active

bin/hdfs haadmin -transitionToActive nn1

查看是否Active

bin/hdfs haadmin -getServiceState nn1

8.3.5 配置HDFS-HA自动故障转移

具体配置

(1)在hdfs-site.xml中增加

        <property>
                <name>dfs.ha.automatic-failover.enabled</name>
                <value>true</value>
        </property>

(2)在core-site.xml文件中增加

        <property>
                <name>ha.zookeeper.quorum</name>
                <value>hadoop101:2181,hadoop102:2181,hadoop103:2181</value>
        </property>

(3)同步配置到其他机器

[hadoop@hadoop101 hadoop-2.7.2]$ xsync etc

启动

(1)关闭所有HDFS服务:

[hadoop@hadoop101 hadoop-2.7.2]$ sbin/stop-dfs.sh

(2)启动Zookeeper集群:

bin/zkServer.sh start

(3)初始化HA在Zookeeper中状态:

bin/hdfs zkfc -formatZK

(4)启动HDFS服务:

sbin/start-dfs.sh

验证

(1)将Active NameNode进程kill

kill -9 namenode的进程id

(2)将Active NameNode机器断开网络

service network stop

8.4 YARN-HA配置

8.4.1 YARN-HA工作机制

官方文档:http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html

YARN-HA工作机制

8.4.2 配置YARN-HA集群

规划集群

hadoop101hadoop102hadoop103
NameNodeNameNode
JournalNodeJournalNodeJournalNode
DataNodeDataNodeDataNode
ZKZKZK
ResourceManagerResourceManager
NodeManagerNodeManagerNodeManager

具体配置

(1)yarn-site.xml

    <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
        </property>

    <!--启用resourcemanager ha-->
    <property>
            <name>yarn.resourcemanager.ha.enabled</name>
            <value>true</value>
    </property>
    
    <!--声明两台resourcemanager的地址-->
    <property>
            <name>yarn.resourcemanager.cluster-id</name>
            <value>cluster-yarn1</value>
    </property>
    
    <property>
            <name>yarn.resourcemanager.ha.rm-ids</name>
            <value>rm1,rm2</value>
    </property>
    
    <property>
            <name>yarn.resourcemanager.hostname.rm1</name>
            <value>hadoop101</value>
    </property>
    
    <property>
            <name>yarn.resourcemanager.hostname.rm2</name>
            <value>hadoop102</value>
    </property>
    
    <!--指定zookeeper集群的地址--> 
    <property>
            <name>yarn.resourcemanager.zk-address</name>
            <value>hadoop101:2181,hadoop102:2181,hadoop103:2181</value>
    </property>
    
    <!--启用自动恢复--> 
    <property>
            <name>yarn.resourcemanager.recovery.enabled</name>
            <value>true</value>
    </property>
    
    <!--指定resourcemanager的状态信息存储在zookeeper集群--> 
    <property>
            <name>yarn.resourcemanager.store.class</name>
            <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    </property>

(2)配置mapred-env.sh,yarn-env.sh的JAVA_HOME

JAVA_HOME=/opt/modules/jdk1.8.0_144

(3)配置mapred-site.xml

<!-- 指定MR运行在Yarn上 -->
<property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
</property>

(2)同步更新配置到其他节点的配置信息

[hadoop@hadoop101 hadoop-2.7.2]$ xsync etc

停止之前启动的hdfs集群并删除datas、logs目录下的文件

[hadoop@hadoop101 hadoop-2.7.2]$ sbin/stop-dfs.sh

[hadoop@hadoop101 hadoop-2.7.2]$ rm -rf datas/* logs/*
[hadoop@hadoop102 hadoop-2.7.2]$ rm -rf datas/* logs/*
[hadoop@hadoop103 hadoop-2.7.2]$ rm -rf datas/* logs/*

启动hdfs

sbin/start-dfs.sh

启动YARN

(1)在hadoop101中执行:

sbin/start-yarn.sh

(2)在hadoop102中执行:

sbin/yarn-daemon.sh start resourcemanager

(3)查看服务状态,如图3-24所示

bin/yarn rmadmin -getServiceState rm1

8.5 HDFS Federation架构设计

NameNode架构的局限性

(1)Namespace(命名空间)的限制

由于NameNode在内存中存储所有的元数据(metadata),因此单个NameNode所能存储的对象(文件+块)数目受到NameNode所在JVM的heap size的限制。50G的heap能够存储20亿(200million)个对象,这20亿个对象支持4000个DataNode,12PB的存储(假设文件平均大小为40MB)。随着数据的飞速增长,存储的需求也随之增长。单个DataNode从4T增长到36T,集群的尺寸增长到8000个DataNode。存储的需求从12PB增长到大于100PB。

(2)隔离问题

由于HDFS仅有一个NameNode,无法隔离各个程序,因此HDFS上的一个实验程序就很有可能影响整个HDFS上运行的程序。

(3)性能的瓶颈

由于是单个NameNode的HDFS架构,因此整个HDFS文件系统的吞吐量受限于单个NameNode的吞吐量。

HDFS Federation架构设计

能不能有多个NameNode,例如:

NameNodeNameNodeNameNode
元数据元数据元数据
Logmachine电商数据/话单数据

HDFS Federation应用
不同应用可以使用不同NameNode进行数据管理:图片业务、爬虫业务、日志审计业务
Hadoop生态系统中,不同的框架使用不同的NameNode进行管理NameSpace(隔离性)。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页

打赏作者

jackyan163

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值