HYSBZ-2660最多的方案-齐肯多夫定理+dp

本文探讨了如何将一个正整数n分解为不同斐波那契数之和的问题,通过齐肯多夫形式分解并使用动态规划方法计算最多可能的组合数。递推式与代码实现详细解析。

最多的方案 HYSBZ - 2660

现在给一个正整数 n,它可以写成一些斐波那契数的和的形式。如果我们要求不同的方案中不能有相同的斐波那契数,那么对一个 n 最多可以写出多少种方案呢?

考虑将数n分解成齐肯多夫形式,然后拆分成段逐位向下分解,显然每一段的贡献是坐标差/2向下取整。因为可能会出现段之间的0影响实际分解情况,所以用dp记录一下每个位置有没有分解。

递推式:
在这里插入图片描述

#include <bits/stdc++.h>

#define ll long long
using namespace std;
const int maxn = 110;
ll f[maxn];
int pos[maxn], g[maxn][2];

int main() {
    ll n;
    cin >> n;
    f[1] = 1, f[2] = 2;
    int m;
    for (m = 3; f[m - 1] <= n; m++)
        f[m] = f[m - 1] + f[m - 2];
//    cout << cnt <<' '<<f[cnt-1];//84 160500643816367088
    --m;
    //齐肯多夫分解
    int cnt = 0;
    for (int i = m; i >= 1; i--)
        if (n >= f[i]) {
            n -= f[i];
            pos[++cnt] = i;
        }
    sort(pos + 1, pos + 1 + cnt);

    //dp
    g[1][1] = 1, g[1][0] = pos[1] - 1 >> 1;
    for (int i = 2; i <= cnt; i++) {
        g[i][1] = g[i - 1][0] + g[i - 1][1];
        g[i][0] = g[i - 1][0] * (pos[i] - pos[i - 1] >> 1) + g[i - 1][1] * (pos[i] - pos[i - 1] - 1 >> 1);
    }
    cout << g[cnt][0] + g[cnt][1];

}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值