题目
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例
输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/edit-distance
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
方法1:动态规划
dp[i-1][j-1]定义: 存储 s1[0…i] 和 s2[0…j] 的最小编辑距离。

Java实现
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= n; j++){
dp[0][j] = j;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
//相等的情况:i、j同时后移
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else{
//3种情况找最小值:替换、删除、增加
//替换:i、j同时后移。
//删除:i指向的删除,i后移,j不变。
//增加:在i的后面添加,i不变,j后移。
dp[i][j] = Math.min(dp[i - 1][j - 1] + 1, Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
}
}
}
return dp[m][n];
}
}

291

被折叠的 条评论
为什么被折叠?



