记录一次重装系统配置工作环境 128G固态换大硬盘,偷懒不想重装系统,利用diskgenius迁移系统,热迁移和PE都没能成功迁移,还不小心删掉了机械盘的所有分区。利用diskgenius搜索分区,恢复文件,勉强把一些数据文件保存下来了。但是软件又得重装 了。
vscode使用git从别人的仓库克隆了一份到本地,将修改后的代码上传到fork的仓库,合并分支 这里我想切换到我自己仓库的master,也就是LRuid/master中去commit,结果出现了一个master分支已经存在的情况,不知道咋办就把origin/master分支删除了。然后就能正常用vscode切换到LRuid/master管理代码直接连接到自己的仓库了。因为刚开始用git,正常流程应该是先fork再从fork里clone,我先clone又建的fork。所以修改代码保存到自己的仓库有点问题,把解决方案做个记录。4.忘记配置自己的git了(配置了的不用管)2.从自己的仓库查看仓库地址。
python并发编程笔记 笔记参考B站进程与程序的概念进程:一个由CPU正在执行的过程程序:QQ程序仅仅是一堆代码,不是一个进程,当它启动起来以后,在任务管理器里看到的才是进程操作系统介绍计算机系统包含3层,硬件、操作系统、应用程序,硬件:硬盘、cpu、内存等,除此以外的都称为软件,应用程序:QQ、word等软件,操作系统:连接硬件和应用程序的特殊软件。,它首先被写在硬盘中,然后代码被读入内存中由CPU执行,然后就出现了电脑桌面。
代码实现SPIN:Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop(ICCV 2019) 在python3.7 torch1.12下安装SPIN。https://github.com/nkolot/SPIN
论文笔记-Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop(ICCV 2019) 基于优化的方法以迭代的方式把参数的人体模型拟合到2D观察中,使得模型能与图片上的人精准对齐;但是这总方法通常比较慢,且对初始化敏感。(参考SMPLify)基于回归的方法使用深度神经网络端到端估计模型参数,虽然估计的姿势准确,但是不能精准对齐图片上的人。本文工作并没有判断两者谁更好,而是将这两方面综合起来。首先从神经网络中直接回归得到初始化参数,这使得下一步优化将更快更加精确。再进行迭代优化,同时用优化的结果进行监督。达到自我改进。
论文笔记-3D Human Pose and Shape Estimation Through Collaborative Learning and Multi-view Model-fitting 多视图+CNN+smpl三维人体重建和姿态估计
3Blue1Brown-线代合集笔记 看论文过程中,总感觉英文中的数学表达符号与理解的有一点不同,顺带复习下线性代数。,某些特殊的变换,例如旋转、剪切、缩放等,会有特殊的名称,旋转矩阵这样。:也是内积,一个向量到另一个向量的投影,可用来判断两向量是否垂直:得出一条与面积垂直的,长度等于前两个向量围成的面积:指结果相同,但。:代表向量围成的面积和体积的产生的正交变换使基向量在变换后依然保持单位长度且相互垂直。对于来说,可以直接把两个向量组成的行列式的值当做面积。因为矩阵A是对基向量的线性变换参考总结的很好的笔记。......