转载自:https://www.jianshu.com/p/25f0139637b7
一般公式分为两种形式,行内公式和行间公式。
- 行内公式: Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.
- 行间公式: Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.
对应的代码块为:
$\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. $
$$\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.$$
行内公式是在公式代码块的基础上前面加上$ ,后面加上$ 组成的
行间公式则是在公式代码块前后使用$ $和 $ $ 。
下面主要介绍数学公式中常用的一些符号。
希腊字母
| 名称 | 大写 | code | 小写 | code |
|---|---|---|---|---|
| alpha | A | A | α | \alpha |
| beta | B | B | β | \beta |
| gamma | Γ | \Gamma | γ | \gamma |
| delta | Δ | \Delta | δ | \delta |
| epsilon | E | E | ϵ | \epsilon |
| zeta | Z | Z | ζ | \zeta |
| eta | H | H | η | \eta |
| theta | Θ | \Theta | θ | \theta |
| iota | I | I | ι | \iota |
| kappa | K | K | κ | \kappa |
| lambda | Λ | \Lambda | λ | \lambda |
| mu | M | M | μ | \mu |
| nu | N | N | ν | \nu |
| xi | Ξ | \Xi | ξ | \xi |
| omicron | O | O | ο | \omicron |
| pi | Π | \Pi | π | \pi |
| rho | P | P | ρ | \rho |
| sigma | Σ | \Sigma | σ | \sigma |
| tau | T | T | τ | \tau |
| upsilon | Υ | υ | \upsilon | |
| phi | Φ | \Phi | ϕ | \phi |
| chi | X | X | χ | \chi |
| psi | Ψ | \Psi | ψ | \psi |
| omega | Ω | \Omega | ω | \omega |
上标与下标
上标和下标分别使用 ^ 与 _ ,例如$ x_i^2$ 表示的是:
x
i
2
x_i^2
xi2。
默认情况下,上、下标符号仅仅对下一个组起作用。一个组即单个字符或者使用**{…}** 包裹起来的内容。如果使用$ 10^10 $ 表示的是,而
1
0
10
10^{10}
1010 才是。同时,大括号还能消除二义性,如x^ 5^ 6 将得到一个错误,必须使用大括号来界定^ 的结合性,如$ {x ^ 5}^ 6 $ :
x
5
6
{x ^ 5}^6
x56 或者 $ x{56} $ :
x
5
6
x^{5^6}
x56 。
括号
小括号与方括号
使用原始的( ) ,[ ] 即可,如
(
2
+
3
)
[
4
+
4
]
(2+3)[4+4]
(2+3)[4+4] :
使用\left(或\right)使符号大小与邻近的公式相适应(该语句适用于所有括号类型),如
$ \left(\frac{x}{y}\right)$ :
(
x
y
)
\left(\frac{x}{y}\right)
(yx)
大括号
由于大括号 {} 被用于分组,因此需要使用 { 和 } 表示大括号,也可以使用 \lbrace 和**\rbrace**来表示。如$ {a*b}:a\∗b$ 或$ \lbrace a*b\rbrace :a*b$ 表示
{
a
∗
b
}
:
a
∗
b
\{a*b\}:a∗b
{a∗b}:a∗b
{
a
∗
b
}
:
a
∗
b
\lbrace a*b\rbrace :a*b
{a∗b}:a∗b。 (此处 * 前不需要加\ ,\ *是错误的)
尖括号
区分于小于号和大于号,使用\langle 和\rangle 表示左尖括号和右尖括号。如$ \langle x \rangle$ 表示: ⟨ x ⟩ \langle x \rangle ⟨x⟩ 。
上取整
使用\lceil 和 \rceil 表示。 如,$ \lceil x \rceil$ : ⌈ x ⌉ \lceil x \rceil ⌈x⌉。 (ceil,天花板)
下取整
使用\lfloor 和 \rfloor 表示。如,$ \lfloor x \rfloor$ : ⌊ x ⌋ \lfloor x \rfloor ⌊x⌋。(floor,地板)
求和与积分
求和
\sum 用来表示求和符号,其下标表示求和下限,上标表示上限。如:
$ \sum_{r=1}^n$ 表示:
∑
r
=
1
n
\sum_{r=1}^n
∑r=1n
$$ \sum_{r=1}^n$$ 表示:
∑
r
=
1
n
\sum_{r=1}^n
r=1∑n
积分
\int 用来表示积分符号,同样地,其上下标表示积分的上下限。
如,$\int_{r=1}^\infty$:
∫
r
=
1
∞
\int_{r=1}^\infty
∫r=1∞
多重积分同样使用 int ,通过 i 的数量表示积分导数: (integral,积分)
$\iint$ :
∬
\iint
∬
$\iiint$ :
∭
\iiint
∭
连乘
$\prod {a+b}$,输出:
∏
a
+
b
\prod {a+b}
∏a+b。
$\prod_{i=1}^{K}$,输出:
∏
i
=
1
K
\prod_{i=1}^{K}
∏i=1K。
$$\prod_{i=1}^{K}$$,输出:
∏
i
=
1
K
\prod_{i=1}^{K}
i=1∏K
其他
与此类似的符号还有,
$\prod$ :
∏
\prod
∏
$\bigcup$ :
⋃
\bigcup
⋃
$\bigcap$ :
⋂
\bigcap
⋂
$arg,\max_{c_k}$:
a
r
g
max
c
k
arg\,\max_{c_k}
argmaxck
$arg,\min_{c_k}$:
a
r
g
min
c
k
arg\,\min_{c_k}
argminck
$\mathop {argmin}_{c_k}$:
a
r
g
m
i
n
c
k
\mathop {argmin}_{c_k}
argminck
$\mathop {argmax}_{c_k}$:
a
r
g
m
a
x
c
k
\mathop {argmax}_{c_k}
argmaxck
$\max_{c_k}$:
max
c
k
\max_{c_k}
maxck
$\min_{c_k}$:
min
c
k
\min_{c_k}
minck
分式与根式
分式
- 第一种,使用 \frac ab ,\frac作用于其后的两个组a ,b ,结果为 a b \frac ab ba。如果你的分子或分母不是单个字符,请使用{…}来分组,比如$\frac {a+c+1}{b+c+2}$表示 a + c + 1 b + c + 2 \frac {a+c+1}{b+c+2} b+c+2a+c+1。
- 第二种,使用**\over**来分隔一个组的前后两部分,如{a+1\over b+1}: a + 1 b + 1 {a+1\over b+1} b+1a+1
连分数
书写连分数表达式时,请使用 \cfrac 代替 \frac 或者 \over 两者效果对比如下:
\frac 表示如下:
$$x=a_0 + \frac {1^2}{a_1 + \frac {2^2}{a_2 + \frac {3^2}{a_3 + \frac {4^2}{a_4 + ...}}}}$$
显示如下:
x
=
a
0
+
1
2
a
1
+
2
2
a
2
+
3
2
a
3
+
4
2
a
4
+
.
.
.
x=a_0 + \frac {1^2}{a_1 + \frac {2^2}{a_2 + \frac {3^2}{a_3 + \frac {4^2}{a_4 + ...}}}}
x=a0+a1+a2+a3+a4+...42322212
\cfrac 表示如下:
$$x=a_0 + \cfrac {1^2}{a_1 + \cfrac {2^2}{a_2 + \cfrac {3^2}{a_3 + \cfrac {4^2}{a_4 + ...}}}}$$
显示如下:
x
=
a
0
+
1
2
a
1
+
2
2
a
2
+
3
2
a
3
+
4
2
a
4
+
.
.
.
x=a_0 + \cfrac {1^2}{a_1 + \cfrac {2^2}{a_2 + \cfrac {3^2}{a_3 + \cfrac {4^2}{a_4 + ...}}}}
x=a0+a1+a2+a3+a4+...42322212
根式
根式使用\sqrt 来表示。
如开4次方:$\sqrt[4]{\frac xy}$ :
x
y
4
\sqrt[4]{\frac xy}
4yx
开平方:$\sqrt {a+b}$:
a
+
b
\sqrt {a+b}
a+b
多行表达式
分类表达式
定义函数的时候经常需要分情况给出表达式,使用\begin{cases}…\end{cases} 。其中:
- 使用 \ 来分类,
- 使用 & 指示需要对齐的位置,
- 使用 \ + 空格表示空格。
$$
f(n)
\begin{cases}
\cfrac n2, &if\ n\ is\ even\\
3n + 1, &if\ n\ is\ odd
\end{cases}
$$
表示:
f
(
n
)
{
n
2
,
i
f
n
i
s
e
v
e
n
3
n
+
1
,
i
f
n
i
s
o
d
d
f(n) \begin{cases} \cfrac n2, &if\ n\ is\ even\\ 3n + 1, &if\ n\ is\ odd \end{cases}
f(n)⎩⎨⎧2n,3n+1,if n is evenif n is odd
$$
L(Y,f(X)) =
\begin{cases}
0, & \text{Y = f(X)} \\
1, & \text{Y $\neq$ f(X)}
\end{cases}
$$
表示:
L
(
Y
,
f
(
X
)
)
=
{
0
,
Y = f(X)
1
,
Y
≠
f(X)
L(Y,f(X)) = \begin{cases} 0, & \text{Y = f(X)} \\ 1, & \text{Y $\neq$ f(X)} \end{cases}
L(Y,f(X))={0,1,Y = f(X)Y = f(X)
如果想分类之间的垂直间隔变大,可以使用 \[2ex] 代替 \ 来分隔不同的情况。(3ex,4ex 也可以用,1ex 相当于原始距离)。如下所示:
$$
L(Y,f(X)) =
\begin{cases}
0, & \text{Y = f(X)} \\[5ex]
1, & \text{Y $\neq$ f(X)}
\end{cases}
$$
表示:
L
(
Y
,
f
(
X
)
)
=
{
0
,
Y = f(X)
1
,
Y
≠
f(X)
L(Y,f(X)) = \begin{cases} 0, & \text{Y = f(X)} \\[5ex] 1, & \text{Y $\neq$ f(X)} \end{cases}
L(Y,f(X))=⎩⎪⎪⎨⎪⎪⎧0,1,Y = f(X)Y = f(X)
多行表达式
有时候需要将一行公式分多行进行显示。
$$
\begin{aligned}
a& =b+c-d \\
& \quad +e-f\\
& =g+h\\
& =i
\end{aligned}
$$
a = b + c − d + e − f = g + h = i \begin{aligned} a& =b+c-d \\ & \quad +e-f\\ & =g+h\\ & =i \end{aligned} a=b+c−d+e−f=g+h=i
其中begin{aligned} 表示开始多行公式,end{aligned} 表示结束;公式中用\ 表示回车到下一行,& 表示对齐的位置。
方程组
使用\begin{array}…\end{array} 与\left { 与\right. 配合表示方程组:
$$
\left \{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
$$
{
a
1
x
+
b
1
y
+
c
1
z
=
d
1
a
2
x
+
b
2
y
+
c
2
z
=
d
2
a
3
x
+
b
3
y
+
c
3
z
=
d
3
\left \{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right.
⎩⎨⎧a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3
注意:通常MathJax通过内部策略自己管理公式内部的空间,因此a…b 与a…….b (.表示空格)都会显示为ab 。可以通过在ab 间加入 “\ ,” 增加些许间隙, “;” 增加较宽的间隙,"\quad" 与 “\qquad” 会增加更大的间隙。
特殊函数与符号
三角函数
$\sin x$ :
sin
x
\sin x
sinx
$\arctan x$ :
arctan
x
\arctan x
arctanx
比较运算符
小于(\lt ):
<
\lt
<
大于(\gt ):
>
\gt
>
小于等于(\le ):
≤
\le
≤
大于等于(\ge ):
≥
\ge
≥
不等于( \ne ) :
≠
\ne
=
可以在这些运算符前面加上 \not ,如 \not\lt :
≮
‘
\not\lt`
<‘
集合关系与运算
并集(\cup ):
∪
\cup
∪
交集(\cap ):
∩
\cap
∩
差集(\setminus ):
∖
\setminus
∖
子集(\subset ):
⊂
\subset
⊂
子集(\subseteq ):
⊆
\subseteq
⊆
非子集(\subsetneq ):
⊊
\subsetneq
⊊
父集(\supset ):
⊃
\supset
⊃
属于(\in ):
∈
\in
∈
不属于(\notin ):
∉
\notin
∈/
空集(\emptyset ):
∅
\emptyset
∅
空(\varnothing ):
∅
\varnothing
∅
排列
\binom{n+1}{2k} : ( n + 1 2 k ) \binom{n+1}{2k} (2kn+1)
{n+1 \choose 2k} : ( n + 1 2 k ) {n+1 \choose 2k} (2kn+1)
箭头
(\to ):
→
\to
→
(\rightarrow ):
→
\rightarrow
→
(\leftarrow ):
←
\leftarrow
←
(\Rightarrow ):
⇒
\Rightarrow
⇒
(\Leftarrow ):
⇐
\Leftarrow
⇐
(\mapsto ):
↦
\mapsto
↦
逻辑运算符
(\land ):
∧
\land
∧
(\lor ):
∨
\lor
∨
(\lnot ):
¬
\lnot
¬
(\forall ):
∀
\forall
∀
(\exists ):
∃
\exists
∃
(\top ):
⊤
\top
⊤
(\bot ):
⊥
\bot
⊥
(\vdash ):
⊢
\vdash
⊢
(\vDash ):
⊨
\vDash
⊨
操作符
(\star ):
⋆
\star
⋆
(\ast ):
∗
\ast
∗
(\oplus ):
⊕
\oplus
⊕
(\circ ):
∘
\circ
∘
(\bullet ):
∙
\bullet
∙
等于
(\approx ):
≈
\approx
≈
(\sim ):
∼
\sim
∼
(\equiv ):
≡
\equiv
≡
(\prec ):
≺
\prec
≺
范围
(\infty ):
∞
\infty
∞
(\aleph_o ):
ℵ
o
\aleph_o
ℵo
(\nabla ):
∇
\nabla
∇
(\Im ):
ℑ
\Im
ℑ
(\Re ):
ℜ
\Re
ℜ
模运算
(\pmod ):
b
(
m
o
d
n
)
b \pmod n
b(modn)
如a \equiv b \pmod n :
a
≡
b
(
m
o
d
n
)
a \equiv b \pmod n
a≡b(modn)
点
(\ldots ):
…
\ldots
…
(\cdots ):
⋯
\cdots
⋯
(\cdot ):
⋅
\cdot
⋅
其区别是点的位置不同,\ldots 位置稍低,\cdots 位置居中。
$$
\begin{aligned}
a_1+a_2+\ldots+a_n \\
a_1+a_2+\cdots+a_n
\end{aligned}
$$
表示:
a
1
+
a
2
+
…
+
a
n
a
1
+
a
2
+
⋯
+
a
n
\begin{aligned} a_1+a_2+\ldots+a_n \\ a_1+a_2+\cdots+a_n \end{aligned}
a1+a2+…+ana1+a2+⋯+an
顶部符号
对于单字符,\hat x : $\hat x $
多字符可以使用\widehat {xy} :
x
y
^
\widehat {xy}
xy
类似的还有:
(\overline x ):
x
‾
\overline x
x
矢量(\vec ): KaTeX parse error: Expected group after '\vec' at end of input: \vec
向量(\overrightarrow {xy} ):
x
y
→
\overrightarrow {xy}
xy
(\dot x ):
x
˙
\dot x
x˙
(\ddot x ):
x
¨
\ddot x
x¨
(\dot {\dot x} ):
x
˙
˙
\dot {\dot x}
x˙˙
表格
使用\begin{array}{列样式}…\end{array} 这样的形式来创建表格,列样式可以是clr 表示居中,左,右对齐,还可以使用 "| " 表示一条竖线。表格中各行使用 “\” 分隔,各列使用 "& " 分隔。使用 \hline 在本行前加入一条直线。 例如:
$$
\begin{array}{c|lcr}
n & \text{Left} & \text{Center} & \text{Right} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i \\
\end{array}
$$
得到:
n
Left
Center
Right
1
0.24
1
125
2
−
1
189
−
8
3
−
20
2000
1
+
10
i
\begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \\ \end{array}
n123Left0.24−1−20Center11892000Right125−81+10i
矩阵
基本内容
使用 “\begin{matrix}…\end{matrix} ” 这样的形式来表示矩阵,在\begin 与\end 之间加入矩阵中的元素即可。矩阵的行之间使用\ 分隔,列之间使用& 分隔,例如:
$$
\begin{matrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2 \\
\end{matrix}
$$
得到:
1
x
x
2
1
y
y
2
1
z
z
2
\begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \\ \end{matrix}
111xyzx2y2z2
括号
如果要对矩阵加括号,可以像上文中提到的一样,使用 “\left ” 与 \right 配合表示括号符号。也可以使用特殊的matrix 。即替换\begin{matrix}…\end{matrix} 中 “matrix ” 为 “pmatrix” ,“bmatrix”,“Bmatrix” ,“vmatrix”, “ Vmatrix”
pmatrix $\begin{pmatrix}1 & 2 \ 3 & 4\ \end{pmatrix}$ :
(
1
2
3
4
)
\begin{pmatrix}1 & 2 \\ 3 & 4\\ \end{pmatrix}
(1324)
bmatrix $\begin{bmatrix}1 & 2 \ 3 & 4\ \end{bmatrix}$ :
[
1
2
3
4
]
\begin{bmatrix}1 & 2 \\ 3 & 4\\ \end{bmatrix}
[1324]
Bmatrix $\begin{Bmatrix}1 & 2 \ 3 & 4\ \end{Bmatrix}$ :
{
1
2
3
4
}
\begin{Bmatrix}1 & 2 \\ 3 & 4\\ \end{Bmatrix}
{1324}
vmatrix $\begin{vmatrix}1 & 2 \ 3 & 4\ \end{vmatrix}$ :
∣
1
2
3
4
∣
\begin{vmatrix}1 & 2 \\ 3 & 4\\ \end{vmatrix}
∣∣∣∣1324∣∣∣∣
Vmatrix $\begin{Vmatrix}1 & 2 \ 3 & 4\ \end{Vmatrix}$ :
∥
1
2
3
4
∥
\begin{Vmatrix}1 & 2 \\ 3 & 4\\ \end{Vmatrix}
∥∥∥∥1324∥∥∥∥
元素省略
可以使用
\cdots : ⋯
\ddots: ⋱
\vdots: ⋮
来省略矩阵中的元素,如:
$$
\begin{pmatrix}
1&a_1&a_1^2&\cdots&a_1^n\\
1&a_2&a_2^2&\cdots&a_2^n\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
1&a_m&a_m^2&\cdots&a_m^n\\
\end{pmatrix}
$$
表示:
(
1
a
1
a
1
2
⋯
a
1
n
1
a
2
a
2
2
⋯
a
2
n
⋮
⋮
⋮
⋱
⋮
1
a
m
a
m
2
⋯
a
m
n
)
\begin{pmatrix} 1&a_1&a_1^2&\cdots&a_1^n\\ 1&a_2&a_2^2&\cdots&a_2^n\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 1&a_m&a_m^2&\cdots&a_m^n\\ \end{pmatrix}
⎝⎜⎜⎜⎛11⋮1a1a2⋮ama12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn⎠⎟⎟⎟⎞
增广矩阵
增广矩阵需要使用前面的表格中使用到的 \begin{array} … \end{array} 来实现。
$$
\left[ \begin{array} {c c | c} %这里的c表示数组中元素对其方式:c居中、r右对齐、l左对齐,竖线表示2、3列间插入竖线
1 & 2 & 3 \\
\hline %插入横线,如果去掉\hline就是增广矩阵
4 & 5 & 6
\end{array} \right]
$$
显示为:
[
1
2
3
4
5
6
]
\left[ \begin{array} {c c | c} %这里的c表示数组中元素对其方式:c居中、r右对齐、l左对齐,竖线表示2、3列间插入竖线 1 & 2 & 3 \\ \hline %插入横线,如果去掉\hline就是增广矩阵 4 & 5 & 6 \end{array} \right]
[142536]
公式标记与引用
使用 “\tag{yourtag}” 来标记公式,如果想在之后引用该公式,则还需要加上 “\label{yourlabel} ” 在 “\tag” 之后,
如"$$a = x^ 2 - y^3 \tag{1}$$" 显示为:
a
=
x
2
−
y
3
(1)
a = x^2 - y^3 \tag{1}
a=x2−y3(1)
如果不需要被引用,只使用 **"\tag{yourtag} ** ,显示为:
x
+
y
=
z
(1.1)
x+y=z\tag{1.1}
x+y=z(1.1)
使用 "{yourlabel} " 不带括号引用,如$$a + y^ 3 \stackrel {yourlabel} = x^2$$ 显示为:
a
+
y
3
=
y
o
u
r
l
a
b
e
l
x
2
a + y^3 \stackrel {yourlabel} = x^2
a+y3=yourlabelx2
字体
####黑板粗体字
此字体经常用来表示代表实数、整数、有理数、复数的大写字母。
$\mathbb ABCDEF$:
A
B
C
D
E
F
\mathbb ABCDEF
ABCDEF
$\Bbb ABCDEF$:
A
B
C
D
E
F
\Bbb ABCDEF
ABCDEF
黑体字
$\mathbf ABCDEFGHIJKLMNOPQRSTUVWXYZ$ : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbf ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ
$\mathbf abcdefghijklmnopqrstuvwxyz$: a b c d e f g h i j k l m n o p q r s t u v w x y z \mathbf abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz
打印机字体
$\mathtt ABCDEFGHIJKLMNOPQRSTUVWXYZ$ :
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
\mathtt ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
参考文档
| # | 链接地址 | 文档名称 |
|---|---|---|
| 1 | blog.csdn.net/dabokele/article/details/79577072 | Mathjax公式教程 |
| 2 | blog.csdn.net/ethmery/article/details/50670297 | 基本数学公式语法 |
| 3 | blog.csdn.net/lilongsy/article/details/79378620 | 常用数学符号的LaTeX表示方法 |
| 4 | www.mathjax.org | Beautiful math in all browsers |
1万+

被折叠的 条评论
为什么被折叠?



