在上篇文章中,未能成功解决问题(目前已解决),所以换了另一个思路。具体代码如下:
#获取图片主色调——法2
import colorsys
from PIL import Image
import optparse
def get_dominant_color(image):
image = image.convert('RGBA') #A表示Alpha颜色透明度。取值0~1之间。取值为1时表示一个完全不透明的像素。其作用在于使数码合成变得更加容易。
max_score = 1
dominant_color = []
for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
if a == 0:
continue #跳过完全透明的像素
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1] #饱和度转换
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) >> 13, 235) #亮度转换
y = (y - 16.0) / (235 - 16)
if y > 0.9:
continue #跳过过于明亮的颜色
score = (saturation + 0.1) * count #饱和度加上0.1表示不忽略灰色
if score > max_score:
max_score = scor

本文介绍了使用Jupyter进行图像主色调提取的另一种方法,对比结果显示存在与肉眼判断的色差问题。代码分析指出,实际颜色偏向黄色,但代码识别为红色,初步试验表明这种方法可能在识别准确率上存在问题。
最低0.47元/天 解锁文章
3439

被折叠的 条评论
为什么被折叠?



