【洛谷 P4156】 [WC2016]论战捆竹竿(border相关 / 同余最短路)

传送门

显然是把所有 b o r d e r border border拿出来做背包
但显然跑不过去
于是考虑做同余最短路
显然是在 % n \%n %n下做
但还是过不了

考虑 b o r d e r border border的性质
形成 l o g log log个等差数列
顺便在这里补一下证明:


A , B A,B A,B S S S两个 b o r d e r border border且都满足 ∣ A ∣ , ∣ B ∣ ≥ ∣ S ∣ 2 |A|,|B|\geq\frac{|S|}{2} A,B2S
A A A为最长的 b o r d e r border border
首先一个显然的结论是:
若存在 x , y x,y x,y都为 S S S的周期,那么 g c d ( x , y ) gcd(x,y) gcd(x,y)仍然为 S S S的周期
另一个显然的结论是 ∣ S ∣ − l e n g t h b o r d e r |S|-length_{border} Slengthborder为周期

p = ∣ S ∣ − ∣ A ∣ , q = ∣ S ∣ − ∣ B ∣ p=|S|-|A|,q=|S|-|B| p=SA,q=SB
S − g c d ( p , q ) ≥ ∣ A ∣ S-gcd(p,q)\geq |A| Sgcd(p,q)A
那么 g c d ( p , q ) = p gcd(p,q)=p gcd(p,q)=p,则 q ∣ p q|p qp
那么长度 ≥ ∣ S ∣ 2 \geq \frac{|S|}{2} 2S b o r d e r border border就是公差为 p p p的等差数列

然后再递归 ∣ S ∣ 2 \frac{|S|}{2} 2S,于是得证


那么考虑对于每一个等差数列 d , d + k , d + 2 k . . . . . d + l ∗ k d,d+k,d+2k.....d+l*k d,d+k,d+2k.....d+lk
% d \% d %d意义下的同余最短路
那么显然会分别形成 g c d ( d , k ) gcd(d,k) gcd(d,k)个环
对于每个环,我们可以直接从 d i s dis dis最小的一个开始
由于要满足最多填 l l l k k k
用单调队列维护即可

再考虑怎么从 f ′ ( % d 1 ) f'(\%d_1) f(%d1)转移到 f ( % d 2 ) f(\%d_2) f(%d2)
那么 f i = min ⁡ f j ′ % d 2 = i f j ′ f_i=\min_{f'_j\%d_2=i}f'_j fi=minfj%d2=ifj
然后再考虑一次原来的长度为 d 1 d_1 d1的转移

复杂度 O ( n l o g n ) O(nlogn) O(nlogn)

#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ib==ob)?EOF:*ib++;
}
inline int read(){
    char ch=gc();
    int res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
inline ll readll(){
    char ch=gc();
    ll res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
inline int readstring(char *s){
	int top=0;char ch=gc();
	while(isspace(ch))ch=gc();
	while(!isspace(ch)&&ch!=EOF)s[++top]=ch,ch=gc();
	return top;
}
template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int N=500005;
cs ll inf=1e18;
int nxt[N];
char s[N];
ll f[N],tp[N],w;
int n,bor[N],cnt,m,q[N],qr[N];
inline int gcd(int a,int b){return b?gcd(b,a%b):a;}
inline void solve(int be,int del,int l){
//	cout<<be<<" "<<del<<" "<<l<<'\n';
	int d=gcd(be,m);
	for(int i=0;i<m;i++)tp[i]=f[i];
	for(int i=0;i<be;i++)f[i]=inf;
	for(int i=0;i<m;i++)chemn(f[tp[i]%be],tp[i]);
	for(int i=0;i<d;i++){
		int top=0;
		q[top=1]=i;
		int now=(i+m)%be;
		while(now!=q[1])q[++top]=now,now=(now+m)%be;
		for(int i=2;i<=top;i++)chemn(f[q[i]],f[q[i-1]]+m);
		chemn(f[q[1]],f[q[top]]+m);
		for(int i=2;i<=top;i++)chemn(f[q[i]],f[q[i-1]]+m);
	}
	//for(int i=0;i<be;i++)cout<<f[i]<<" ";puts("");
	m=be;
	if(del<0)return;
	d=gcd(m,del);
	for(int i=0;i<d;i++){
		int top=0;
		q[top=1]=i;
		int now=(i+del)%m,pos=1,num=0,hd,tl;
		while(now!=q[1])q[++top]=now,now=(now+del)%m;
		for(int i=2;i<=top;i++)if(f[q[i]]<f[q[pos]])pos=i;
		for(int i=pos;i<=top;i++)qr[++num]=q[i];
		for(int i=1;i<pos;i++)qr[++num]=q[i];
		q[hd=tl=1]=1;
		for(int j=2;j<=top;j++){
			while(hd<=tl&&j-q[hd]>l)hd++;
			if(hd<=tl)chemn(f[qr[j]],f[qr[q[hd]]]+1ll*del*(j-q[hd])+m);
			while(hd<=tl&&f[qr[q[hd]]]-1ll*del*q[hd]>=f[qr[j]]-1ll*del*j)tl--;
			q[++tl]=j;
		}
	}
}
inline void solve(){
	n=read(),w=readll()-n;
	readstring(s);
	for(int i=0,j=2;j<=n;j++){
		while(i&&s[i+1]!=s[j])i=nxt[i];
		if(s[i+1]==s[j])i++;
		nxt[j]=i;
	}m=n;cnt=0;
	for(int i=1;i<m;i++)f[i]=inf;f[0]=0;
	for(int p=n;nxt[p];p=nxt[p])bor[++cnt]=n-nxt[p];
	for(int i=1,j=1;i<=cnt;j++,i=j){
		while(j<cnt&&bor[i+1]-bor[i]==bor[j+1]-bor[j])j++;
		solve(bor[i],bor[i+1]-bor[i],j-i);
	}
	ll res=0;
	for(int i=0;i<m;i++)
	if(w>=f[i])res+=(w-f[i])/m+1;
	cout<<res<<'\n';
}
signed main(){
	#ifdef Stargazer
	freopen("lx.in","r",stdin);
	#endif
	int T=read();
	while(T--)solve();
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值