目录
Python实现基于HANTS算法(时间序列谐波分析法)的长时间序列数据去噪、重建、填补
引言
在时间序列分析中,数据的质量对结果有着至关重要的影响。长时间序列数据常常面临噪声、缺失值和不规律的模式,这些问题会严重影响数据的分析和建模。HANTS(Harmonic Analysis of Time Series)算法是一种有效的时间序列去噪和重建的方法,特别适用于周期性数据。本文将详细探讨HANTS算法的原理、实现方法,以及在Python中的具体应用案例,并采用面向对象的编程思想来组织代码。
一、HANTS算法的基本原理
1.1 什么是HANTS算法?
HANTS算法是一种基于谐波分析的时间序列处理技术,主要用于提取周期性信号的趋势和去除噪声。其核心思想是通过傅里叶变换将时间序列分解为多个谐波分量,然后通过选取特定的谐波分量来重建信号,达到去噪和填补缺失值的目的。
1.2 HANTS算法的工作流程
HANTS算法的主要步骤包括:
- 数据预处理:对输入的时间序列数据进行初步清理。
订阅专栏 解锁全文
226

被折叠的 条评论
为什么被折叠?



