对坐标的曲线积分(第二类曲线积分)

设L为xoy平面内从A到B的一条有向光滑曲线弧,P在L上有界,在L上沿L的方向任意插入一点列M1,M2...Mn-1,把L分为n个有向小段,则P在有向函数L上对坐标x的曲线积分为

计算:有参数方程x=φ(t),y=ψ(t),t在曲线上的取值范围为(α,β),则

有时,涉及方向导数时,还要利用以下几个公式

\frac{\partial u}{\partial n}=\frac{\partial u}{\partial x}cos(n,x)+\frac{\partial u}{\partial y}cos(n,y)

其中u是关于xy的变量,n为曲线的法向量

\left\{\begin{matrix} cos(n,x) =cos(\tau ,x)\\ cos(n,y) =-cos(\tau ,y) \end{matrix}\right.

其中\tau是曲线的切向量,上面等式的原理是切向量与法向量垂直

\pm cos(\tau ,x)ds=\pm dx

对dy同理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值