《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
目录
引言
目标检测是计算机视觉中的一项基本任务,涉及识别和定位图像中的目标。深度学习彻底改变了对象检测,允许更准确和有效地检测图像和视频中的对象。到2024年,有几种深度学习模型在物体检测方面取得了重大进展。以下是2024年用于物体检测的十大前沿深度学习模型:
1. YOLOv10
YOLOv10是一种用于对象检测的最先进的深度学习模型,它使用更高效的骨干网络和一组新的检测头。YOLOv10可以高精度地实时检测对象,并且可以在大型数据集上进行训练。
论文:https://arxiv.org/pdf/2405.14458
优点:
1. 非常快速和有效的目标检测
2. 在大数据集上的高精度
3. 在低端设备上运行
缺点:
1. 小目标检测效果有待提升
2. 需要大型数据集才能获得最佳性能
2.EfficientDet
EfficientDet是一种用于对象检测的深度学习模型,它使用高效的骨干网络和一组新的检测头。EfficientDet被设计为高效和准确,可以高精度地实时检测对象。
论文:https://openaccess.thecvf.com/content_CVPR_2020/html/Tan_EfficientDet_Scalable_and_Efficient_Object_Detection_CVPR_2020_paper.html
优点:
1. 在几个基准数据集上的最先进性能
2. 高效准确的目标检测
3. 可以在大数据集上训练
缺点:
1. 需要大量的计算资源
2. 在较小的数据集上训练具有挑战性
3. RetinaNet
RetinaNet是一种用于对象检测的深度学习模型,它使用特征金字塔网络和新的焦点损失函数。RetinaNet旨在解决对象检测中前景和背景示例之间的不平衡,从而提高准确性。
论文:https://arxiv.org/pdf/1905.10011
优点:
1. 提高了目标检测的准确性
2. 效率高,可以在低端设备上运行
3. 易于训练和使用
缺点:
1. 小目标检测效果有待提升
2. 需要大量数据才能获得最佳性能
4. DETR v2
DETR v2是一个用于对象检测的深度学习模型,使用基于transformer的架构。DETR v2使用集合预测方法来同时预测每个对象的类别和位置。
论文:https://arxiv.org/pdf/2207.08914
优点:
1. 目标检测精度高,操作简单
2. 能处理高度重叠的对象
3. 不需要锚箱或非最大抑制
缺点:
1. 在计算上耗费资源
2. 需要大量数据才能获得最佳性能
5. CenterNet++
CenterNet++是一个用于对象检测的深度学习模型,它使用热图来预测每个对象的中心。然后,CenterNet++使用第二个网络来预测对象的大小和方向。
论文:https://arxiv.org/pdf/2204.08394
优点:
1. 目标检测精度高、效率高
2. 能处理较小的目标
缺点:
1. 在计算上耗费资源
2. 对高度重叠的物体效果不好
6. FCOS
FCOS是一种用于对象检测的深度学习模型,它使用完全卷积的架构来预测每个对象的类别和位置。FCOS高效且准确,在多个基准数据集上获得了最先进的结果。
论文:https://arxiv.org/pdf/2006.09214
优点:
1. 在几个基准数据集上的最先进性能
2. 目标检测精度高、效率高
3. 不需要锚箱或非最大抑制
缺点:
1. 在计算上耗费资源
2. 需要大型数据集才能获得最佳性能
7. Swin Transformer
Swin Transformer是一个用于对象检测的深度学习模型,使用基于transformer的架构。Swin Transformer使用集合预测方法来同时预测每个对象的类和位置。
论文:https://openaccess.thecvf.com/content/ICCV2021/papers/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.pdf
8.DINO
DINO是一种用于对象检测的深度学习模型,使用基于transformer的架构。DINO使用集合预测方法来同时预测每个对象的类别和位置。
9.ViTAE
ViTAE是一种用于对象检测的深度学习模型,使用基于transformer的架构。ViTAE使用集合预测方法来同时预测每个对象的类别和位置。
论文:https://proceedings.neurips.cc/paper_files/paper/2021/file/efb76cff97aaf057654ef2f38cd77d73-Paper.pdf
10.BEiT
BEiT是一种用于对象检测的深度学习模型,使用基于transformer的架构。BEiT使用集合预测方法来同时预测每个对象的类别和位置。
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!